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SYMBOLS AND CONVENTIONS 

Certain symbols which appear throughout this thesis are defined 

as follows: 

D Absorbance 

^t Absorbance at time t 

D. Absorbance at the end of a reaction 

E Extinction coefficient (M'^ cm~^) 

Si Pathlength of an optical cell 

M Molarity (moles/1 iter) 

[ ] Concentration (M) 

À Wavelength (nm) 

nm Nanometer 

R Gas constant (8.314 J mol'^ K'^) 

T Temperature 

t Time 

s Second 

N 
23 -1 

Avogadro's number (6.02 x 10 molecules mol" ) 

h Planck's constant (6.62 x 10"^^ J s) 

a* Taft polar substituent parameter 
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INTRODUCTION 

This thesis has been divided into two parts as indicated by the 

title. The first part dealing with a-hydroxyalkylchromium(III) 

complexes is further subdivided into two subsections. The first 

subsection discusses the investigation of acidolysis and homolysis 

reactions. The second subsection deals with the reactions of Fe^^ 
2+ 

and Cu with these complexes. Part II was based on a study of some 

cobalt complexes of binucleating Schiff-base ligands which has already 

been published (1). 
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PART I. REACTIONS OF a-HYDROXYALKYLCHROMIUM(III) COMPLEXES 

A. ACIDOLYSIS AND HOMOLYSIS 
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INTRODUCTION 

General 

Interest in metal carbon bonds has been especially keen since 

vitamin was found by a crystal structure determination to contain 

a cobalt-carbon bond (2). Today, even more interest in metal-carbon 

bonds may be attributed to the study of homogeneous and heterogeneous 

catalysis (3,4). Although a thorough understanding of metal-carbon 

bond reactivity would seem to be essential to the creation of more 

efficient catalysts, few systematic studies are available (3). Indeed, 

the rapid growth in the field of homogeneous catalysis has already gone 

far beyond our mechanistic understanding of the molecular processes 

(4,5). It was with these points in mind that we sought a broader under­

standing of chromium-carbon bond reactivity and thus undertook the 

study of a homologous series of complexes. 

The objective of this thesis was to investigate systematically the 

reactivity of the chromium-carbon bond in a homologous series of 

complexes of the type (H20)gCrC(R^R^)0R^^. The reactivity of these 

complexes was studied to obtain a quantitative estimate of the chromium-

carbon bond strength as well as an understanding of the relative effect 

of substitution on chemical reactivity. 

A better understanding of metal-carbon bond strengths would allow 

further insight into the question of reactivity of organometallie 

species. More a priori knowledge of metal-carbon bond strengths might 

also be useful in predicting stabilities of previously unknown 
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complexes. As already alluded to, this understanding could also be 

applied to catalysis research dealing with metal-alkyl species 

especially relating to homogeneous systems. 

All of the complexes studied in this thesis have the general 

structure shown below. The chromium is formally considered to be in the 

OHo 

HgO 

HgO 

HgO 
/ 

C««BJOR 

2+ 

CIO: 

ÔH, 

plus three oxidation state and the alkyl group is counted as a 

carbanion. Throughout the remainder of this thesis, the structural 
1 7  7+ 

formulae of these complexes will be abbreviated as CrC(R R )0R , The 

remaining five coordination sites around the chromium are occupied by 

water molecules and are usually not indicated henceforth. 

Historical 

The first reported synthesis of organochromium complexes of the 

form (HgOOgCrR^* was in 1957 by Anet and LeBlanc (6). They synthesized 

the complexes by addition of CrfClO^jg to benzyl and substituted benzyl 

halides. The reaction was shown to obey the following stoichiometry. 

Several different routes to benzyl chromium dications have subsequently 

been developed. 

2Cr2+ + ClCHgCgHg > CrCl^"^ + CrCHgCgHg^"*" (I-l) 
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A more general route to organochromium complexes was developed 

through the use of hydroperoxides. 

Scheme I-l 

R-I-OOH + Cr^* -^> R-f-O" + Cr(III) (1-2) 

R4-0' > R- + (CH3)2C=0 (1-3) 

R- + Cr^* > CrR2+ (1-4) 

2+ 
This preparation was initially used for benzylpentaaquochromium 

?+ 
(7), and methylpentaaquochromium (8-10). Leslie and Espenson have 

subsequently used this method to prepare a series of alkylchromium 

dications including: Cr-R^* where R = (-CHg, -CgH^, n-CgHy, i-CgHy, 

(CHgjgCCHg-, sec-C^Hg, t-C^Hg) (11). A third method of forming penta-

aquoorganochromium dications involves the radiolytic generation of 

organic radicals in the presence of Cr(C10^)2. This method has been 

used to prepare a wide variety of organochromium species including: 

Cr-R2+ where R = (-CHgOH, -CHgCHO, -CH(CH3)0H, -CH(CH2)0C2Hg, -CHgCOOH) 

(12,13). All of these preparative methods have one feature in conmon, 

i.e., the generation of an organic radical in the presence of an 

?+ 
inorganic radical (Cr ). 

We have used a different method which we will refer to as a 

modified Fenton's reagent (MFR) preparation. This method was first 

used by Schmidt, Swinehart and Taube for the generation of a-hydroxy-

alkylchromium complexes (9). Their proposed mechanism was a follows, 
2+ 

using the case of the formation of a-hydroxymethylchromium for 

illustration: 
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Scheme 1-2 

Cr^* + HgOg > Cr3+ + OH + H^O (1-5) 

6H + CH3OH > CHgOH + HgO (1-6) 

Cr2+ + CHgOH > CrCH^OH^"^ (1-7) 

Under optimum conditions, these reactions yield the organochromium 

complex in a yield ~80% of the theoretical, the latter being one-half of 
?+ 2+ 

the initial quantity of Cr , considering the 2:1 stoichiometry of Cr 

to HgOg. This method allows a certain degree of flexibility by choice 

of RH and other reaction conditions and is the method of choice for 
2+ 

preparing the a-hydroxyalkylchromium ions for the kinetic analysis 

undertaken in this thesis. Their results and ours clearly show that 

2+ 
under appropriate conditions of concentrations, the reaction of Cr 

with the radical competes very favorably with the competing 

dimerization of the organic radical. These organochromium complexes 

have characteristic u.v.-visible absorption spectra which are similar 
2+ 

to the absorption spectra of the simple alkylchromium complexes (10). 

Cohen and Meyerstein have discussed the electronic spectra of these 

complexes (13). 

Cohen and Meyerstein have also studied the rates of reaction for 

a number of radiolytically generated a-hydroxyalkyl radicals combining 
2+ 

with Cr (13). Their results show that the radicals combine with 

Cr^*, equation 1-7, with second order rate constants of 10^-10^ M ^s ^ 

depending on the particular radical. These values are significantly 

lower than diffusion controlled, but because of the large excess of 
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Oj. • px 
[Cr ] over [R], the Cr capture of the radical competes quite favor­

ably with radical coupling reactions. Some of the reactions which the 
2+ 

a-hydroxyalkylchromium complexes undergo are typical of other 

organochromium complexes, namely acidolysis and hemolysis reactions. 

Schmidt et (9) and Cohen and Meyerstein (13) have previously 

examined acidolysis of a number of these and related complexes. We 

studied both reactions with an interest in the effect of substitution 

on Cr-C bond reactivity as noted earlier. Other work with 

a-alkoxyalkylchromium(III) complexes has recently included: reactions 

with Hg^*, VO^^, Fe^^ and Cu^* (14-16). The homolysis reaction of 

organochromium complexes has previously been discussed only for aralkyl-

chromium(III) complexes (17-23) and this aspect of the work, therefore, 

was markedly different from what previous investigators had reported 

(9,13). 

Nohr and Espenson studied the mechanism of oxidative cleavage for 

2+ 
the reaction of benzyl chromium and substituted analogs (17). 

2+ 
Remarkably, the rate of reaction of the benzyl chromium with a variety 

of oxidants (Fe^*, Cuf*, Og, HgOg, Co(NH2)gBr2+ and Co(NH3)5Cl^"^), 

was independent of both the nature and concentration of the oxidant. 

They proposed a scheme which involved the unimolecular homolytic 

cleavage of the chromium-carbon bond. The example shown below 
3+ 

illustrates the reaction when Fe is used as the oxidant. 

Scheme 1-3 

PhCNgCrZ* > PhCHg + Cr?* (1-8) 
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Scheme 1-3 (Continued) 

Cr2+ + Fe^* —> Cr3+ + Fe^* (1-9) 

HgO + PhCHg + Fe3+ > PhCHgOH + H+ + Fe^* (1-10) 

3+ 
Product analyses showed that the inert Cr products formed were 

2+ 
the same as those obtained from reactions of Cr with the given 

oxidant used. The organic products also depended upon the given 

oxidant, with Fe^* and Cu^* forming PhCHgOH (24), but bibenzyl was 
2+ 

formed when Co(NH2)gCl was used as the oxidant. These results 

pointed to the Sj^l unimolecular hemolysis mechanism depicted in Scheme 

1-3. 

The first step depicted in Scheme 1-3 is, in fact, the microscopic 

2+ 
reverse of the formation reaction between a benzyl radical and Cr . 

It is not surprising, therefore, that hemolytic cleavage should be an 

important pathway for reaction of benzyl-like organochromium complexes. 

Indeed, the hemolysis pathway was also observed by Marty and Espenson 

(18) for dichromium complexes such as (CrCH2CgH^)20*^ and Pohl and 

Espenson (19) for a variety of difunctional aralkylchromium(III)^^ 

species including [CrCHgCgH^CHgCr]** and [CrCH2CgH4(CH2)^CgH4CH2Cr]^'^, 

further substantiating the hemolytic pathway. The hemolysis reaction 

in the latter system was also supported by both kinetic data and product 

analyses (18,19). 

As previously stated, a common feature of the preparative routes 
2+ 

to organechromium(III) complexes CrR has involved the coupling of 

two radicals, Cr^* and R», in the formation step, Equation 1-4. As 
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stated, Schmidt et utilized this knowledge by generating •C(R^R^)OH 
2+ 

radicals in the presence of Cr using a modified Fenton's (25) reagent 
2+ 

consisting of Cr and HgOg (9). It had previously been known that 

Cr^* as well as Fe^*, Ti(III) (26,27) and V(II) would react with HgOg 

to generate OH (12). In some cases, ESR evidence showed that with a 

suitable organic substrate in solution, an organic radical would be 

generated by hydrogen abstraction as in equation I-ll, 

•OH + H-C(R^R^)OR > HgO + •C(R^R^)OR (I-ll) 

Other M-C(R^R^)0H"^ species have previously either been proposed 

as reactive intermediates or very unstable complexes in solution (28-

32). Although the a-hydroxyalkyl radicals are very strong one electron 

reducing agents (12, 33-37), typically the reaction which forms the 

organometallic species, at least formally, must be considered a one 

electron oxidation of the metal (38), Thus, Ni(I) reacted with «CH^OH 

forms Ni^^-CHgOH. Also, Cr^^ is considered to be oxidized to the 

1 ? 
Cr(III) oxidation state upon reaction with •C(R R )0H as in equation 

1-12. 

Cr^I + •C(R^R^)OH > Cr^^^-C(R^R^)OH (1-12) 

Of all the presently known a-hydroxyalkyl complexes, those of 

Cr(III) are the most kinetically stable. This may in part be ascribed 

to the substitution inertness of Cr(III) complexes (39). Although 

substitutional inertness (or lability) is certainly important, it 

cannot be the only factor stabilizing these organometallic complexes. 
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Indeed, the comparatively substitutionally inert organocobalt(III)-

(macrocycle)^ analogs have been studied and were found to be quite 

unstable (40,41). Some decomposed by an internal redox reaction between 

the organic group and Co(III) resulting in heterolytic cleavage of the 

Co-C bond, Equation 1-13 (40). This pathway towards decomposition is 

much less favorable for the organochromium complexes because the Cr(I) 

oxidation state would be expected to be much less accessible than the 

Co^(macrocycle) oxidation state. Thus, the a-hydroxyalkylchromium(III) 

LgCoCHgOH > LgCo^" + HCHO + H"^ (1-13) 

complexes provide a rather rare example in which the organocobalt 

(macrocycle) analogs are actually less stable, as the reverse has 

invariably been found for alkyls and other organometallie compounds. 

Recently, interest in a-hydroxyalkyl-metal complexes has been 

attributed to the possible role of these species as intermediates in 

the reductive polymerization of carbon monoxide commonly referred to 

as the Fischer-Tropsch reaction (42-44). Only a few examples of these 

species appear in the literature (45-47). Very recently, the reaction 
2+ 

of some a-hydroxyalkylchromium(III) complexes, including Cr-R where 

R = (-CHgOH, -CH(CH^)OH, -CiCH^j^OH, -CHiCll^jOC^H^, -CH(CF3)0H), with 

Fe^* and Cu^^ was reported (46). The more highly substituted analogs 
2+ 

of a-hydroxyalkylchromium(III) complexes studied here, including Cr-R 

^(Macrocycle) = Mec[14]diene the complex RCo(N,mac) is 
abbreviated as L^CoR. 
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where R = (-[(CHgjfCgHsjOH, -CfCgHgjgOH, -CfCHgifi-CgHyiOH, 

-[(CHgjgOCHfCHgjg), allowed further insight into the mechanisms of 

these reactions. 
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EXPERIMENTAL 

Materials 

Reagents 
?+ ?+ 

Orqanochromium complexes The complexes CrCHgOH , CrCHgOCHg 
pi 

and CrCHfCHglOCgHg can be isolated pure by ion-exchange chromatography 

because they are the most stable complexes of the series. It was found 

that the more highly substituted analogs, which were the main focus of 

this study, are much less stable toward decomposition, even at reduced 

temperatures and could not be chromatographically isolated in pure form. 

It should be noted, however, that previous workers had already 

encountered this problem and studied reactions of their complexes in 

the unseparated reaction solution (9). It has also been shown that the 

rates of reaction of CrCH^OH^^ toward acidolysis, or Fe^* (9,48) 

are identical whether the complex is purified by ion-exchange 

chromatography or not. 

The reaction forming the basis of the preparative procedure used 

for all of the complexes is the MFR method shown in Equations 1-14 to 

1-16, All of the complexes were prepared in 1 M alcohol or ether, 

Cr2+ + HgOg —> Cr3+ + H^O + OH (1-14) 

ÔH + HC(R^R^)OR > •C(R^R^)OR + HgO (1-15) 

Cr2+ + .C(R^R^)OR —-> CrC(R^R^)OR (1-16) 

aqueous perchloric acid solutions except in cases in which the alcohol 

or ether are not soluble to the 1 M level. In those cases, the alcohol 
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or ether was typically 0.01 to 0.1 M and no differences were noted. 

Because the highly substituted analogs were quite unstable, they were 

used immediately after preparation or were prepared and studied in situ. 

The complexes were prepared by mixing excess Cr (typically 1.5-5.0 rtW) 

with HgOg (0.5-1.0 mf^) in presence of the desired co-solvent alcohol or 

ether at 1 M concentration or lower. 

Cr(II) perchlorate solutions The chromium(II) perchlorate 

solutions were prepared by two methods and all results were found to be 

independent of the method chosen. In the first method, chromium pellets 

(Apache Chemicals Inc.; 99.999%) were dissolved in HCIO^ (49). In a 

typical preparation, chromium metal (M g) was dissolved in HCIO^ 

(40 ml, 1 M). The chromium metal was activated with HCl (4 M) just 

prior to dissolution in the Ng purged HCIO^. Dissolution of the 

pellets required one or two days after which the solution was trans­

ferred off any remaining metal and stored under oxygen-free conditions. 

Solutions of chromium(II) perchlorate were also prepared by 

electrochemical reduction of Cr^ClO^jg'nHgO. Crystals of the 

Cr(C10^)2-hydrate were prepared by a reduction of chromium trioxide by 

hydrogen peroxide. Pure CrfClO^ïg'nHgO was dissolved in HCIO^ 

(0.2-0.3 M) to an approximate concentration of 0.25 to 0.3 M. These 

deep blue solutions were reduced over a mercury pool cathode at 
2+ 

8-9 volts for one to two hours under a constant stream of Ng. The Cr 
?+ 

solutions obtained were typically 97-98% Cr . 
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Other inorganic reagents The perch!orate salts of halo-

pentaamminecobalt(III) complexes were prepared by dissolution of 

[CofNHgigBrjBrg (50) or [CofNHgigClJClg (51.52) in HCIO^ (1.5, 0.2 M) 

at 35°C. After the solution was filtered to remove any undissolved 

material, concentrated HCIO^ ('\^300 ml) was added and the solution was 

gradually cooled. Precipitates were recrystallized twice from dilute 

HCIO^ and finally washed several times with cold 95% ethanol and ether. 

The u.v.-visible spectra matched values reported in the literature (53). 

Lithium perchlorate was prepared by neutralization of LigCOg 

(Baker, reagent) with HCIO^ and was typically recrystallized three 

times. Other inorganic reagents were used as received. 

Organic reagents Most of the organic reagents used in this 

study were simple aliphatic alcohols; in one case, a dialkyl ether was 

also used. The organic reagents used are summarized in Table I-l. All 

of the alcohols were commercially available and the cases of n-propanol, 

2-propanol and 3-pentanol were used as received. In the remaining 

cases, the alcohols were fractionally distilled at atmospheric pressure 

with only a middle cut from the distillation being used for experimental 

purposes. For isopropyl ether, there has been sufficient documentation 

of its propensity to form peroxides (54) that it was pretreated with 
2+ 

several washings with Cr solutions prior to being distilled. To 

reduce the chance of a peroxide explosion, the distilling pot was never 

allowed to approach dryness. 
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Table I-l. Purification of organic reagents 

Alcohol/Ether Source b.p. 
(Lit.) 

b.p. 
(°C) 

Checked by 

n-Propanol Mallinckrodt 97.4 

2-Propanol 

2-Butanol 

3-Methyl-2-
butanol 

3,3-Dimethyl' 
2-butanol 

3-Pentanol 

Fischer Scientific 82.4 

Eastman Chemicals 99.5 

Aldrich (98%) 112.9 

Aldrich (99%) 120.4 

Aldrich (99+%) 116.1 

98-99' 

112^ 

119b 

nmr^ 

nmr^ 

Isopropyl 
ether Aldrich (99%) 68.0 68-68.5^ g.c./^H nmr^ 

®Used as received. 

^'Doubly distilled with only middle fraction used. 

CRef. 55. 

"^Double distilled from Cr^* and used immediately; stored under Ng. 
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Methods 

Analyses 

2+ 
Reaqents The concentration of Cr solutions was calculated 

from the absorbance of a solution at 713 nm (e = 4.9 cm~^). The 

total amount of chromium present in a solution was determined by Haupt's 

method (56), This method involved oxidizing all chromium species 

present to chromium(VI) in alkaline solution. After oxidation was 

complete, the absorbance at 372 nm (e = 4830 M'^ cm~^) was determined 

and the concentration was calculated. The concentration of HCIO^ in 

CrfClO^jg solutions was determined by a difference method. Aliquots of 

CrfClO^jg solutions were placed on Dowex SOW X-8 cation exchange resin 

in the form and eluted with water. The acidic eluent collected was 

titrated with standardized NaOH to a pink phenolphthalein endpoint. 

Using the known [Cr^*] and the total [H^] from the titration, the [H^] 

in the CrfClO^jg solution was calculated. The concentration of Li^ was 

determined by titrating the released after aliquots were passed 

through a column of Dowex SOW X-8 cation exchange resin in the form. 

Hydrogen peroxide solutions were analyzed using the iodometric 

method of Kolthoff and Sandell (S7). In a typical analysis, an 

aliquot of HgOg (2 mL) was pipetted into a SO mL erlenmeyer flask, 

KI ('vO.2 g) was added and three drops of a neutral arranonium molybdate 

catalyst was added after the solution was acidified with HgSO^ (2 mL; 

4 M). The solution was titrated to a sharp endpoint with sodium 

thiosulfate using starch indicator. 
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Reaction products The organic products of some reactions were 

determined by g.l.c. analyses. The analytical services department of 

the Ames Laboratory performed all of the g.l.c. analyses. 

In some cases, preseparation and concentration of the samples to 

be analyzed by extraction into CHgClg was necessary. In one case, the 

organic product(s) from the hemolysis reaction of CrCfCHgjfCgHgjOH^* 

were separated in the following manner: the CrCfCHgjfCgHgjOH^* was 

prepared by reacting Cr^"*" (2.5 mM); HCIO^ (0.10 M); 2-butanol (50 mM); 

HgOg (1 mM) in a 100 mL total volume. The initial concentration of 

CrC(CH2)(C2Hg)0H^^ was estimated from the absorbance of a cold solution 

at 400 nm to be ~0.5 mM. After addition of [^(NH^jgCl^* (3.5 mM), the 

cold solutions ('\4°C) were extracted with CHgClg (seven 10 mL washings), 

the CHgClg extracts were washed twice with HCIO^ (0.1 M; 5 mL), and the 

volume of CHgClg reduced to 10 mL. 
?+ 

The only organic product of CrC(CH2)(C2Hg)0H homolysis was found 

to be 2-butanone and it was formed quantitatively. A blank experiment 

in which the Co(NH2)Cl^^ was added prior to the HgOg so that the Cr^* 
2+ 

was converted to CrCl indicated no 2-butanone was formed. 

Kinetics 

The decomposition of the a-hydroxyalkylchromium(III) complexes 

was followed spectrophotometrically at a convenient wavelength, 

usually the absorption maximum for these complexes near 400 nm. The 
2+ 

experiments were carried out under an atmosphere of Cr -scrubbed 

nitrogen using standard syringe/septa techniques. A constant 
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temperature was maintained by a circulating water bath and a jacketed 

cell-holder for experiments of conventional time scales. 

Conventional time scale experiments were performed on a Gary 219 

spectrophotometer. Most kinetic measurements were made by introducing 

solutions containing HgOg, alcohol (or ether), perchloric acid and 

lithium perchlorate in 2 cm cylindrical quartz cells. After thermo-

stating the cell, Cr^* was injected, producing the alkylchromium; its 

formation was readily apparent visually from the yellow color. For 

acidolysis experiments, this one injection was all that was needed 

since acid was already present. Therefore, after injection of the 
2+ 

Cr and shaking the cell to mix the solution, the absorbance was 

recorded as a function of time at a constant wavelength. Typically for 
2+ 2+ 

acidolysis experiments, in which an excess of Cr over CrROR was 

desired, the Cr^* was 1-3 mM, at least three times the [CrROR^*]. 

A few homolysis experiments were performed on the Gary 219, 
?+ 

especially the low temperature experiments with CrCfCHgjfCgHgjOH . 

The method used for these experiments was identical to the method just 

described for acidolysis experiments, except that once the organo-

chromium was produced, an additional injection of halopentaammine-

cobalt(III) was made. In order to study faster reactions sec), 

the stopped-flow technique was used. A Durrum-Gibson D-110 stopped-

flow instrument with a D-132 multi-mixing accessory was used. The 

multi-mixing apparatus was necessitated by several experimental 

considerations. The major consideration was the very fast acidolysis 

rates of the more highly substituted a-hydroxyalkylchromium(III) 
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complexes. This intrinsic acidolysis decomposition tended to decompose 

the organochromium(III) complexes so fast that they could not be 

thermostated for the kinetic measurements of other fast reactions they 

undergo. The multi-mixing apparatus circumvented these difficulties 

since it first mixes two solutions, and then rapidly mixes that with a 

third. It thus allowed the formation of the organochromium(III) 

complexes in situ for reaction with other reagents. More details of 

the D-132 multi-mixing operation are presented in the Instrumentation 

section. 

All of the reactions were performed under conditions which gave 

pseudo-first-order plots of In(D^-D^) versus time which were linear for 

greater than three half-lives. For most stopped-flow experiments, the 

data were automatically transferred to a PDP-15 computer for immediate 

calculation of rate constants using a least-squares analysis. Graphical 

analysis was also used as a check in some cases. 

Activation parameters 

Activation parameters were obtained for both acidolysis and 

hemolysis reactions of some of the complexes. Values of and 

were evaluated by collecting kinetic data at various temperatures and 

using the Eyring relation shown in Equation 1-17. In all cases 

k . RT ^(-AH*/RT) (M7) 

where activation parameters were determined, a least-squares analysis 

of the data was utilized. In a few cases, the overall temperature 
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range studied was rather narrow and the values obtained from these 

results are probably less accurate than for wider temperature ranges 

(see Results section). 

Instrumentation 

For conventional kinetic studies, a Varian Instruments Gary 219 

u.v.-visible spectrophotometer equipped with a thermostated cell holder 

was used. A modified Durrum-Gibson D-110 stopped-flow spectrophotometer 

equipped with a D-132 multi-mixing accessory (58) was used for all 

reactions which were too fast to be studied by conventional techniques. 

A schematic of this device is shown in Figure I-l. In principle and 

in practice, the D-132 allows the formation of unstable intermediates 

which, once formed, may then be reacted with other reagents. The 

D-132 accessory itself consists of standard hardware including a 

syringe block and cuvette which literally may be bolted onto the 

D-110 frame and an electronic control unit which controls a number of 

variables including: drive time (the time the pneumatic piston rams 

the drive syringes); age time (the delay between the first ramming for 

initial mixing and second ramming); purge time (the time period which 

the purge valve is open); collect time (the time period which the 

collect valve is open). All of these parameters must be adjusted in 

order to optimize the operation of the multi-mixing device. In fact, 

there are other parameters which also determine the flow rate of 

solution through the solvent pathways. These include the pressure 

which is driving the pneumatic piston and the viscosity of the solvent 
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Figure I-l. Schematic diagram of the D-132 multi-mixing system 
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being used. Optimization of these conditions involved varying several 

parameters until satisfactory results were obtained. 

Photochemical generation of CrC(R^R^)QH^^ 

A photochemical method was also used to generate a-hydroxyalkyl-

chromium(III) complexes. The photochemical experiments were carried 

out using fast-extinguishing Xenon-arc flash lamps in the Xenon 

Corporation Model 710 system. The experiments were performed in quartz 

cells using unfiltered u.v. radiation. Typically, 300 J energies were 

used. The experiments were usually performed by exposing a solution of 

Cr^* ((1.9 to 15) X 10"^ M) and ketone (acetone or 2-butanone) 1-3 M, 

in dilute aqueous perchloric acid (1 x 10"^ to 1 M). In some cases, 
_ o 

a complementary alcohol such as 2-propanol was also added (10~ M to 

1 M). Most experiments were carried out at 24±1°C. In a typical 
p i  _  O  

experiment, a pale blue solution of Cr ,2 to 15 x 10" M, was added 

to a deaerated mixed ketone/aqueous HCIO^ solution. This solution was 

exposed up to five times with 300 J pulses of light to produce a 

substantial amount of a-hydroxyalkylchromium(III) (see Results 

section). 
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RESULTS 

Characterization and Reactivity 

Identification of organochromium complexes 

The complexes which were the focus of this study were analogs of 

complexes which have been previously studied and characterized (9,13, 

14,42). Some of the evidence for the formation of these complexes is 

based upon their u.v.-visible absorption spectra. In some cases, 

although the absorption spectrum was not measured, the intense absorp­

tion band around 400 nm, characteristic of the organochromium 

complexes, was qualitatively observed during kinetic determinations. 

The u.v.-visible spectrum of CrCfCHgjfCgHgjOH^^ was recorded 

between 450 and 280 nm (Figure 1-2) at '^4°C to minimize the decompo­

sition of the complex. The extinction coefficients were determined to 

be 500±100 cm"^ at 405±5 nm and ^2000 M~^ cm"^ at ^310 nm. These 

values must be regarded as lower limits because of some decomposition 

of the complex due to acidolysis even at ~4°C. These values are quite 

similar to the known values for CrC(CH2)20H^^ (e = 700 M"^ cm"^ at 

407 nm; 2500 cm"^ at 311 nm) (13). 

The reactivity of these complexes was also taken as another indi­

cation of their identity. Thus, all of these complexes were found to 

undergo reactions typical of other known a-hydroxyalkylchromium(III) 
3+ 

complexes. These reactions included acidolysis, homolysis, and Fe or 

2+ 
Cu reactions, which are treated in the next part. This pattern of 
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Figure 1-2. Electronic spectrum of (HgOjgCrCfCHgjfCgHgjOH^*, 

{i = 1 cm), ~xlO"^ M 
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reactivity has been previously shown for other a-hydroxyalkyl-

chromium(III) complexes (42,48), Finally, the products of various 

reactions were consistent with the schemes which are presented in this 

thesis. Thus, homolysis of a-hydroxy-2-butylchromium(III) produced 

2-butanone quantitatively. The final absorption spectra after reaction 
3+ 

also indicated that CrfHgO)^ was formed by acidolysis. Thus, the sum 

total of various observations and experiments indicated that the spectra 

and reactivity patterns of these complexes were those of a-hydroxyalkyl-

chromium(III) species. 

Reaction selection 

The two reactions of a -hydroxyalkylchromium(ni) complexes which 

were focused on in this study were acidolysis and homolysis reactions. 

By careful selection of reaction conditions, the reaction of interest 

could be studied. In order to focus on the acidolysis reaction, the 
2+ 

homolysis reaction pathway was suppressed by having an excess of Cr 
2+ 

present in solution. The excess of Cr prevented the loss of 
2+ 

organochromium to radical coupling reactions because Cr recombines 

with any carbon-centered radicals formed by homolysis. Radical 

coupling reactions would lead to the production of pinacols at the 

expense of organochromium complex as shown in Scheme 1-4 (59). 

Scheme 1-4 

crc(rtr2)0r2+ z cr^* + .c(r^r^)or 

2 .C(.R^R^)OR ^ RO(R^R^)C-C(R^R^)OR 

(1-18) 

(1-19) 
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1 2 
The steady-state concentration of •C(R R )0R may be estimated from 

Equation 1-20. This equation may be simplified by assuming that 

1 2 k,g[crc(rlr2)0r2+] 
[.C(R'Rf)OR] = s 2 - (1-20) 

" k_ig[crz+] + 2kig[.c(rlr2)0r] 

k_^g[Cr^''"] > 2k^g[C(R^R^)0R]gg. Under typical acidolysis conditions, the 

1 2  _  7  
[•C(R R )0R]gg concentrations were estimated to be ~10" M or lower. 

Once formed, the radicals would either couple with each other or with 

a Cr^* species (59). With the [Cr^"*"] at least 1000 times greater than 
1 9 ?+ 

[•C(R ,R )OR]gg, the competitive process favored reccupling with Cr 

to reform the organochromium. Except for the two complexes with the 

fastest homolysis rates, the radical dimerization process was easily 

suppressed by a five-fold excess of Cr^* over the CrC(R^R^)OR^^ 

concentration. Based upon these calculations, some radical coupling 

may have contributed to the observed acidolysis rates for 

CrC(CH2)(i-C2Hy)0H2*, although under most acidolysis conditions 

it was probably less than 10%. Radical coupling processes may have 
p i  

been very important in the decomposition of CrC(CHg)(t-C^Hg)0H , but 

this complex was only briefly examined under acidolysis conditions and 

found to decompose with a k^^^ of MO sec"^ at 25.0°C. Since this 

decomposition rate was much lower than the homolysis rates observed, 

it was not studied further. An estimate of the steady-state radical 

concentrations and the percent of reaction which may proceed with 

radical coupling is presented in Table 1-2. A large concentration 
2+ 

excess of Cr over the steady-state concentration of radicals favored 
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Table 1-2. Estimation of steady-state radical concentrations under 
some acidolysis conditions 

Complex khom/S" '  Maximum . 
% Coupling 

CRCFCHGITI-CGHYJOHZ* 21 .6  ~3.5 X 10"7  7 .0  

CRC(C2HG)20H2+ 8 .4  1 .6  X 10"^ 1 .6  

CrC(CH3)20CH(CH2)2^"^ 5 .8  6 .0  X 10"® 0 .4  

CRC(CH2)(C2HG)0H2+ 0 .92  1 .8  X LO'G 0 .07  

CRCH(C2H5)0H2+ 1 .0  X 10"3  4 .0  X lO'S  0 .01  

^Calculated as [R-]^^ = l<^Q^[CrR0H^"*"]/(k-,3[Cr^'^] + 2k^Q[R.]) with 

k_-j8 10^ s"\ as given in Table 1-4; k^g = 10^ s" by 

successive approximation; [Cr^^]g = 0.5 mM; [CrR^^jg = 0.1 mM; 

T = 25.0°C; y = 1.0 M (LiClO^). 

'^Calculated from lOOCk-jgC'ClR^R^jORj^g/(k_-]g[Cr^^] + 

k^g[*C{,R\R^)0R]gg)); these values were calculated under "worst-

case conditions." 
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2+ 
the recombination of the radicals with Cr and allowed the acidolysis 

rates to be determined without any interfering side reactions. 

Another reaction which was of interest was the homolytic cleavage 

of the chromium-carbon bond. This reaction was studied by 
2+ 

scavenging either Cr or the radical, or both. This reaction will be 
2+ 

subsequently referred to as simply the homolysis reaction. Because Cr 

and the radicals are both very good one-electron reducing agents, 

oxidants were used as "trapping" or scavenging reagents. The scheme 

showing how the homolysis reaction was selected is presented in 

Scheme 1-5. As indicated in the scheme, the acidolysis reaction of the 

Scheme 1-5 

k 
crc(rt,r2)0r2+ cr^* + .c(r\r^)or 

fast OX fast OX 

product^^ Cr^^^ prod. organic product(s) + 2 red 

organochromium(III) species still occurred while the rate of the 

homolysis reaction was measured, but in general, it was a small 

percentage of the overall reaction. The observed rate constant under 

homolysis conditions was defined as: 

kobs = k* + khom 

or "obs = (h + kgW"]) + (1-22) 

Under homolysis conditions, the rate limiting step becomes homolytic 

2+ 
cleavage of the Cr-C bond because the subsequent reactions of Cr 
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and the radicals with the various oxidants are very fast as shown by 

the following data taken from the literature: 

Oxidant kj,^2+/M"^ s'^ Ref s"^ Ref 

CoCNHgigCI^* 2.4 X 10® 60 4.0 x 10^ 61 

CoCNHgjgBr^"^ 6.0 x 10® 62 3.0 x 10® 61 

HgOg (2.8±0.7) x 10^ 63 

Acidolysis reactions 

The acidolysis reactions of the following a -alkoxyalkyl-
?+ 

chromium(III) complexes were studied: CrCHfCgHgjOH , 

CrC(CH3)(C2Hs)0H2+, CrC(CH2)(i-C2Hy)0H2+, CrC(C2Hg)20H2+ and 

CrCfCHgïgOCHfCHgïg^^. Plots of In(D^-D^) versus time were linear for 

three or more half-lives (Figures 1-3 and 1-4). The acidolysis 

reactions were studied over a range of acid concentrations at a 

constant ionic strength of 1.00 M. Plots of the observed rate 

constants versus acid concentration are linear for each complex 

(Figures 1-5 through 1-8). The following rate law is thus obeyed by 

the acidolysis reactions: 

-d lÇrÇ(RV]ORl?_ = + k2[H+])[CrC(RTR2)0R]2+ (1-23) 

The values of k-j and k2 determined from the intercept and slope of 

plots of k^ versus [H^] and are summarized in Table 1-3 along with the 

literature values for analogous complexes. The last three entries in 

the table represent some a"alkoxyalkylchromium(III) complexes which 
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Figure 1-3. Plot of log |D-D^| versus time for decomposition of 

CrCHfCgHgjOH^* under acidolysis conditions at 0.5 M 

HCIO^, 25°C, y = 1.00 M (LiClO^) 
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Figure 1-4. Plot of log i D-D i versus time for decomposition of 

CrCfCHgjfCgHgjOH ^ under acidolysis conditions at 

0.098 M HCIO^, 25.0°C, y = 1.00 M (LiClO^) 
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Figure 1-5. Plot of versus [H*] for acidolysis reactions of 

CrCH(C2H5)0H2+ at 25°C, w =1.00 M (LiClO^) 
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Figure 1-6. Plot of versus [H ] for acidolysis reactions of 

CrC(CH2)(C2Hg)0H2+ at 15.0, 25.0 and 34.8°C, 

y = 1.00 M (LiClO^) 
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Figure 1-7. Plot of versus [H^] for acidolysis reactions of 

CrC(CH3)(i-C3Hy)0H2+ at 15.1, 25.0 and 35.1°C, 

p = 1.00 M (LiClO^) 
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Figure 1-8. Plot of versus [H"^] for acidolysis reactions of 

CrC(C2H5)20H2+ 20.0, 25.0 and 35.0°C, 

; = 1.00 M (LiClO^) 
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Table 1-3 .  Summary of acidolysis values at 25.0°C 

Complex K^/S-T k2/M-1 s-1 Reference 

Cr-CNgOnZ* 0 .66  X 10"3  0 .465  X 10"3  64  

Cr-CH(CH2)0H2+ 1 .97  X 10"^ 9 .54  X 10"^ 9  

Cr-CH(C2H5)0H2+ 3 .17  X 10"3  2 .14  X 10"3  This work® 

Cr-CFCHGJGOH 2+  3 .3  X 10 '^  4 .7  X 10-3  9 ,  48® 

CR-C(CH2)(C2HG)0H2+ 8 .0  X 10 '^  0 .469  This work® 

Cr-C(CH3)(i-C2HY)0H2+* 0 .024  0 .231  This work® 

CR-C(C2HG)20H2+* 0 .027  0 .858  This work® 

CrC(CH3)(t-C^HG)0H2'^*  ~10 sec"^ at 0.10 M This work® 

CRCH20CH22+* very slow «10"® sec"^ 48® 

CRCH(CH2)0C2H52+* <5.0 X 10 '^  3 .8  X LO'S  9® 

CrC(CH3)20CH(CH2)22+* (3 .6±0 .2 )  X 10"^ (4 .7±0 .4 )  X 10-3  This work®'b 

®The ionic strength was maintained at 1.0 M (LiClO^), co-solvent 

was 1 M alcohol or ether, except for entries denoted with (*), in which 

cases saturated solutions were used. 

^This complex rearranges to CrCCCHgjgOH^'^^ under acidolysis 

conditions. 
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have also been investigated. The unusually high reactivity of the 

complex from isopropyl ether (the last entry) was due to its rapid 

conversion to a-hydroxy-2-propylchromium(III) in acid and will be dis­

cussed later. The kinetic data for the acidolysis reactions of 

individual complexes are summarized in Tables 1-5 through 1-8. In 

order to further characterize the acidolysis reaction, it was also 

studied at several temperatures for each complex and Eyring plots of 

ln(k/T) versus 1/T were made (Figure 1-9). Using this relationship, 

the activation parameters and were calculated. These activa­

tion parameters are listed in Table 1-4 for several of the complexes. 

In some of the cases, the activation parameters for the acid-independent 

term were not evaluated as it was a minor term under the range of H* 

concentration which was studied. The activation parameters for the acid 

dependent kg term compare quite favorably with the values obtained by 

Schmidt et aj_. (9). The products of acidolysis are the organic alcohol 

(9,48) and CrfHgO)^^*, the latter identified by its visible spectrum. 

Homolysis reactions 

All of the complexes studied were found to undergo a facile 

homolysis reaction (Equation 1-24). The homolysis of the chromium-

CrC(R^R^)OR^'^ Cr^"^ + *C(R^R^)OR (1-24) 

carbon bond was followed at the absorption maximum characteristic of 

these complexes. The observed rate constants of decomposition under 

homolysis conditions obey clean first-order kinetics. Plots of 
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Figure 1-9. Eyring plots for the decomposition of CrCfCHgjfCgHgjOH^^ 

(•) and CrCfCgHgjgOH^* (o) under acidolysis conditions 

at 1 M HCIO^ 
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Table 1-4. Summary of activation parameters for acidolysis of 

CrC(R,R^ complexes® 

Complex 

Asj/e.u. AH^/kcal mol'^ As|/e. 

*^2 

u. AH^/kcal mol'^ 

CrCfCHgjgOHZ+b -11±2 17.1±0.7 -5±2 19.4±0.8 

CrCfCHgjfCgHgjOHZ+C'd — — — - - - -8±4 15.6±1.7 

CrCfCHgjfi-CgHyjOHZ+C'e 0.5±7.5 19.1±2.2 -10±6 15.4±1.7 

CrCfCgHgjgOHZ+C'C -27±31 11.7±9.4 -18.3±0.45 12.1+0.13 

®1 M ionic strength (LiClO^). 

^Reference 9. 

^This work. 

•^1 M 2-butanol. 

®0.02-0.05 M alcohol, 
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Table 1-5. The kinetics of reaction of CrC(CK.)(CpHr)OH^* under 
acidolysis conditions^ 

T/°C 

15.0 0.10 0.022 (3) 

15.0 0.46 0.083 (3) 

15.0 0.75 0.128 (3) 

25.0 0.003 0.011 (3) 

25.0 0.098 0.055 (3) 

25.0 0.29 0.139 (3) 

25.0 0.48 0.234 ± 0, ,001 (4) 

25.0 0.58 0.280 ± 0, ,008 (8) 

25.0 0.77 0.37 (4) 

34.8 0.10 0.113 (5) 

34.8 0.50 0.520 (6) 

34.8 1.0 1.01 (6) 

% = 1.0 M (LiClO^)' [Cr^*] was varied between (1-3) x 10"^ M. 

[CrCfCHgjfCgHgjOH^*] was estimated (0.1-0.4)x10"^ M depending on the 

run; all values were in 1 M 2-butanol. The numbers in parentheses 

represent the number of replicate determinations. 
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Table 1-6. The kinetics of reaction of CrCfCgHrjgOH^* under 
acidolysis conditions® 

T/°C [H+]/M 

15.4 0.50 0.214 ±0.004 
15.7 0.30 0.136 ±0.003 
20.0 0.50 0.310 ±0.005 
20.0 0.30 0.190 ±0.002 
20.0 0.10 0.069 ± 0.0005 
25.0 0.50 0.457 ± 0.01 
25.0 0.30 0.283 ± 0.004 
25.0 0.10 0.114 ±0.002 
35.0 0.50 0.884 ±0.015 
35.0 0.30 0.574 ±0.01 
35.0 0.10 0.190 ±0.014 

®Ionic strength was 1.0 M (LiClO,); [Cr ~ 2.5 X 10"^M; 

0.5 X 10' M; saturated 3-pentanol in the aqueous acid were 

estimated between 50-100 x 10"^ M. 

Table 1-7. The kinetics of reaction of CrC(CHo)(i-CoH-,)0H^^ under 
acidolysis conditions® o O / 

T/°C [H+]/M W="'  

15.1 0.10 0.0151 
15.1 0.30 0.0317 
15.1 0.437 0.0411 
25.0 0.10 0.0468 
25.0 0.25 0.0808 
25.0 0.40 0.116 
35.1 0.10 0.138 
35.1 0.30 0.232 

^lonic strength was 1.0 M (LiClO^); [Cr^*]^ (1.5-3.0) x 10"^ M; 

'•^2^2^0 ~ (0.5-0.75) X 10"^ M, Saturated solutions of the alcohol were 

estimated to be ^0.02 - 0.04 M, 
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Table 1-8. Summary of acidolysis and homolysis rate constants for 

crchfcghgiohz+a 

T/°C [H+]/M + khom 

25.0 0.10 4.41 ± 0.02^ 3.40 1.01 

0.50 -  - - 4.20 — 

0.70 4.70 ---

35.0 0.10 14.7 ± 0.3d 8.5 ± 0.2 6.2 ± 0.5 

^Constant ionic strength of 1.0 M (LiClO^). 

'^[Cr^^jg varied between 2-4 x 10"^ M; estimated CrCHfCgHgjOH^^ 

^(0.1-0.3) X 10"3 M. 

''Calculated as the difference (k^ + - k^. 

"^In these experiments ^^^3 mM CofNHgjgBr^* was used. 
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In(D^-D^) versus time were linear for at least three half-lives. In 

all cases, the homolysis data were in accord with the rate expression; 

jCrC(R^R^)OR^"*"] (1-25) 

The kinetic data for the reaction shown in Equation 1-24 are summarized 

in Table 1-9. The results for analogous complexes are also included in 

this table. The second-order rate constants for the formation reaction 
2+ 

between Cr and the organic radical were included for those entries 

for which they were available, 

Although in most of the cases studied here, the homolysis reaction 

was much faster than acidolysis, such was not the case for 

CrCHfCgHgjOH^*. For this complex, the acidolysis and homolysis 

reactions were of comparable magnitude and the homolysis rate constants 

were determined by subtracting a substantial acidolysis component 

(Table 1-8), For this particular complex, the acidolysis rate constant 

had been previously measured (9) and the value determined here was in 

reasonable agreement with the literature value. This check increased 

the confidence with which the homolysis rate could be measured and 

added support to our identification of these complexes and their 

reactions. 

The rate constants for the homolysis of the remaining complexes 
?+ 

are much higher than that for homolysis of CrCH(C2Hg)0H 

(1,01 x 10"^ s"^ at 25.0°C) and, in general, the correction for 

acidolysis was small. Nevertheless, to be accurate the observed rate 

constants under homolysis conditions (see Reaction Selection) 
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Table 1-9. Rate constants for homolysis of CrC(R^R^)OR^^ complexes® 

Complex Reference 

Cr-CHgOH^"^ 3.7 X 10"^ 48 

Cr-CH(CH2)0H2+ (8.5±0.3) x 10'^ 48 

CrCH(C2Hj.)0H^'^ (1.01±0.04) x 10"^ This work 

CrCtCHgjgOH^* 0.127 ± 0.003 48, This work 

CrCtCNgitCgH^jOH^* 0.92 ± 0.03 This work 

CrCfCgHgigOH^* 8.39 ± 0.09 This work 

CrCfCHgifi-CgHyiOH^* 21.6 ±0.1 This work 

CrCfCHgJft-C^HgjOH^* >300 This work^ 

crchgochgz* < 10"® 48^ 

CrCHfCHgjOCgHg^* 2.04 x 10"^ 48 

CrCfCHgjgOCHfCHgig^* 5.77 ± 0.15 This work 

®At 25.0°C and 1 M ionic strength (LiClO^). 

'^Calculated from values at a lower temperature. 

^Estfmated. 
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were corrected for the small, but well-known, contribution from 

acidolysis. 

The homolysis reactions were studied over a range of temperatures 

in order to determine activation parameters. The values of activation 

parameters for reaction 1-24 are summarized in Table I-IO. Table I-ll 

shows the independence of the homolysis rate constant on the oxidant 

nature and concentration. In most cases, the temperature range studied 

was limited to ^20°C due to experimental considerations. However, two 

of the complexes studied had homolysis rates in a particularly 

convenient range so that their homolysis rates could be determined by 

both stopped-flow and conventional techniques. The variable tempera­

ture data for these two complexes are listed in Tables 1-12 and 1-13. 

These data were also used to construct Eyring plots which showed a 

linear relation between ln(k/T) against 1/T over the entire temperature 

range studied (Figures I-IO and I-ll), In Figure 1-12, the independence 

?+ 
of the homolysis rate on oxidant is shown for CrCCCH^)(CgH^jOH . 

The other complexes studied were examined over a more limited 

temperature range. The homolysis rate constants for the complex 

?+ 
derived from 3-pentanol co-solvent, CrCfCgHgjgOH , are summarized in 

Table 1-14. For this complex, with a homolysis rate of 8.39 s'^ at 

25°C, the homolysis reaction greatly dominates over the acidolysis 

reaction and only a small correction for acidolysis was necessary. As 

with the other complexes, the homolysis rate is independent of the 

oxidant concentration (Figure 1-13), The Eyring plot from the variable 

temperature data (Table 1-15) was linear over the temperature range 

studied (Figure 1-14). 
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Table I-IO. Summary of the activation parameters for the hemolysis 
reaction 

Complex AS^/cal mol"^ K"^ AH^/kcal mol'^ Reference 

CrCHtCgHgjOH 2+ 37.0 32.5 This work 

CrCCCHgjgOH^"^ 29.4 ± 0.4 27.4 ± 0.1 48 

28.6 + 0.3 27.2 + 0.1 a 

crc(ch2)(c2hg)0h2+ 27.9 1.8 25.9 ± 0.5 This work 

CrC(C2Hg)20H2+ 23.6 ± 1.6 23.2 + 0.5 This work 

crc( C H 2 ) ( I - C 2 H Y )0h2+ 20.1 + 1.2 21.6 ± 0.4 This work 

crc(ch2) ( T - C 4 H G )0h2+ 27.0 + 12.0 22.0 ± 3.0 This work 

CrCHCCHgjOCgHg^"*" 30.2 ± 0.3 30.1 ± 0.1 48 

CrCtCHglgOCHtCHgjgZ* 25.0 + 2.0 23.9 ± 0.7 This work 

^This value represents a combined value from all of the data 
available from both this work and Reference 48. 
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Table 1-11. Range of oxidants used to study the homolysis reaction of 

crc(ch2)(c2hg)0h2+* 

Oxidant 10^ [oxidant]/M 

h2o2 5 - 50 0.90 (0.07)C 

cofnhglgcl 2 - 11 0.90 (0.02) 

cofnhgigbr 1 - 12.5 0.94 (0.03) 

20 - 100 0.96 (0.05)d 

24 - 69 0.97 (0.01 

®A11 experiments were in 1 M 2-butanol aqueous HCIO. solutions 
j 24* 

with [H ] = 0.10 M, except for CofNHgigBr experiments which were in 

0.408 M HCIO4 (see Table I-l); y = 1.0 M. 

^All values have been corrected for acidolysis; 0.055 s"^ at 

0.10 M H"^. 

^At much higher HgOg there seemed to be a slight dependence on 

[HgOg]; at 0.48 M HgOg was M.5 s~^. 

^These values were determined from the intercepts of the 

[oxidant] plots; these reactions are discussed in Part I.B of the 

thesis. 
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Table 1-12. Variation of with temperature for CrCfCH^jgOH^* 

temp/'c kobs'/s"^ 

4.41 

8 . 2  

14 9 

15.0 

24.8 

25.o; 

0.00396 

0.00757 

1 j 0.0243 

0.0252 

0.126 0.137 ± 0.006 (3)® 

0,127 0.16 (2)f 

29.6= 0.254 

33.5^ 0.46 

37.3^ 0.83 

^These homolysis rate constants were corrected for acidolysis at 
each temperature. 

'^All values in 1 M, 2-propanol. 

^This work; [Cr^'*']o = 1-2 x 10"^ M; [HgOg] = 0.4 x 10"^ M; 

[Co(NH2)5Br2+ = 3 x 10"3 M,. 

Salues from Reference 48. 

®This CrC(CH2)20H^* was generated photochemically in 1 M acetone; 

[Cr2+]Q = 1.9 X 10"3 M; [Co(NH3)2Cl^"^] = (2.3-4.6) x 10"^ M.; 

T = 24.5±0.5°C; y = 1 M (NaClO^); 0.1 M HCIO^. 

^Identical experiment as (e) except CofNHgjgBr^* (2.1 -2.3 x 10"^ M) 

was used; [H*] = 1 M. 
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Table 1-13. Variation of for CrCfCHglfCgHgiOH as a function of 

temperature^ 

Temp/°C °K 1/T °K'^ khon/s ^ £n k £n Y 
(xlO^) 

khon/s ^ 

3.0 276.2 3.621 0.0205 ± 0.004 -3.89 -9.51 

5.1 278.3 3.593 0.033 ± 0.003 -3.41 -9.04 

10.0 283.2 3.531 0.081 ± 0.01 -2.51 -8.16 

^11.2^ 284.4 3.516 0.148 ± 0.002 -1.91 -7.56 

~15.3b 288.5 3.466 0.286 ± 0.02 -1.25 -6.92 

M 5.9^ 289.1 3.459 0.298 ± 0,01 -1.21 -6.88 

20.1 293.3 3.409 0.432 ± 0.014 -0.839 -6.52 

20,3 293.5 3.407 0.482 ± 0.009 -0.73 -6.41 

24.8 298.0 3.356 0.935 ± 0.02 -0.067 -5.76 

25.0 298.2 3.353 0.92 ± 0.03 -0.073 -5.77 

29.9 303.1 3.299 1.74 ± 0.05 0.554 -5.16 

30.3 303.5 3.295 1.80 ± 0.05 0.588 -5.12 

32.7 305.9 3.269 2.58 ± 0.1 0.948 -4.78 

34.6 307.8 3.249 

C
O

 C
D

 +1 L
f) 

C
\J 

1.01 -4.72 

36.8 310.0 3.226 4.26 ± 0.3 1.45 -4.29 

®An values were measured in 0,10 M HCIO^; 1 M ionic strength 

(LiClO^) and 1 M 2-butanol; the known values were corrected for a small 

acidolysis contribution. 

'^These temperatures were approximate and are probably too low. 



www.manaraa.com

50 

Table 1-14, Range of oxidants used to study the homolysis reaction 

of CrC(C2Hg)20H2+ 

Oxidant 10^ [oxidant]/M 

Co(NH2)5Cl2+ 2.5 - 7.5 8.40 ± 0,09 

Cu2+ 22 - 149 8.45 ± 0.17b 

Fe3+ ' 23 - 73 8.70 ± 0.3b 

^These values represent the homolysis rate constants corrected for 
acidolysis. 

'^These values were obtained from the intercepts of ys_ [ox] 

plots and are corrected for acidolysis; [CrCfC^HglgOH^*] estimated 

< 0.1 X 10"^ M. 

Table 1-15. Homolysis data for CrCfCgH^jgOH^* 

T I '^obs (10^)1/T ^hom An 

C°c) (°K) (s'T) (°K-T) (s-T) (s-T) 

14.5 287.7 2.18 ±0.07 3.476 0.05 2.13 -4.91 

20.1 293.3 4.5 ±0.1 3.409 0 07 4.43 -4.19 

25.0 298.2 8.5 3.353 0.11 8.39 -3.57 

30.0 303.2 16.5 ±0.14 3 298 0.14 16.36 -2,92 

33.2 306,4 24.8 3.264 0.18 24.6 -2,52 

34.0 307.2 28.6 ±0.5 3.255 0.185 28.4 -2.38 

38,0 311.2 51.0 ±4.0 3,213 0,24 51.0 -1.81 

^Oxidant used for these values was CoCNH^jgCl^^; experiments were 

performed in 0.1 M HCIO^; y = 1,0 M (LiClO^); aqueous solutions 

saturated with 3-pentanol were used. 
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Figure 1-10. Eyring plot for the decomposition of CrC(CH^)^OH^^ 

under homolysis conditions 
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Figure 1-11. Eyring plot for the decomposition of CrCtCHgjtCgHgjOH^^ 

under homolysis conditions 
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Figure 1-12. Plot of versus [Oxidizing Scavenger] for reactions 

of CrCtCH^)(C2Hg)0H^^ with the oxidants: Fe^* (•), 

Ckf* («). HgOg (o), Co(NH2)5Cl2+ (#), and CoCNHgigBrZ* 
(a) 
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1-13. Plot of versus [Oxidizing Scavenger] for the 

reactions of CrC(C2H5)20H^'^ with the oxidants: 

(•),  Cu2+ (e) and Co(NH3)gCl^'^ (#) 
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Figure 1-14. Eyring plot for the decomposition of CrCfCgH^jgOH 

under homolysis conditions 
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The two complexes with the fastest homolysis rates were 

CrC(CH2)(i-C2Hy)0H2+ (Table 1-16) and CrC(CH3)(t-C4Hg)0H^"^. The 

typical plots of versus oxidant and ln(k/T) versus 1/T(°K) for the 

homolysis reaction of CrCfCHgjfi-CgHyjOH^^^ are shown in Figures 1-15 

and 1-16. The results for the complex derived from 3,3-dimethyl-2-

butanol deserve special comment: the experiments with this complex 

were difficult because of the very fast reaction observed. The rate 

constants were near the upper-limit of the stopped-flow range even at 

20°C (Table 1-17), Due to these complications, a very limited 

temperature range was studied and the Eyring plot shown in Figure 1-17 

suffers from this limitation. Despite this difficulty, the reactions 
2+ 

of CrC(CH2)(t-C^Hg)OH were very much the same as for the other 

complexes, just faster. This means that the rate of homolysis was 

still independent of oxidant concentration and without added oxidant 

a much slower acidolysis-like reaction occurred. Because the reaction 

rates of CrC(CH2)(t-C^Hg)OH^^ were so high, it was not studied in as 

much detail as the other complexes. 

The homolysis reactions of CrC(CH2)20CH(CH2)2 were studied over 

a range of temperatures as with the other complexes (Table 1-18). The 

homolysis rate was found to be independent of oxidant and oxidant 
Ox Ox 

concentration, in this case even Fe and Cu (Figure 1-18). The 

Eyring plot yielded activation parameters very similar to the values 

determined for the a-hydroxalkylchromium(III) complexes (Figure 1-19). 

The product analysis of the homolysis reactions were performed under 
?+ 

conditions so that CrC(CH2)20CH(CH2)2 was not allowed to age in the 
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Table 1-16. Range of oxidants used to study the homolysis reaction of 

crc(ch2)(i-c3hy)0h2+ 

Oxidant TO^[Oxidant]/M '^hom'^^"^ 

Co(NH2)5Cl2+ 2.9 - 11 21.6 ±0.1 

Cu2+ 19 - 159 20.4 ± 0.9® 

Fe^^ 14 - 50 22.4 ± 1.0® 

^These values were obtained from the intercepts of vs [ox] 

plots at various [H^] at high [H"*"] a small acidolysis correction was 
applied. 

Table 1-17. Variation of with temperature for 

crc(ch2)(t-c4hg)0h2+* 

T/ ° c  ( ° k )  10^ T'Vk"^ k^Q^g/s'l £n(k/T) 

14.9 288.1 3,471 94 ± 9 -1.12 

18.5 291.7 3.428 141 ± 24 -0.727 

20.2 293.4 3.408 196 ± 53 -0.403 

®A11 values were measured in 0.10 M HCIO^- 1 M ionic strength 

(LiClO^) and solutions were saturated with 3,3-dimethyl-2-butanol. 

'^These values were not corrected for acidolysis which would be a 
very minor contribution. 
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Table 1-18. Variation of with temperature for 

crc(ch3)20ch(ch3)2^'^® 

T/°C 10^ rv°K"^ khom/s'' 

13.9 3.483 1.28 -5.41 

15.4 3.465 1.68 -5.15 

20.5 3.405 2.98 -4.59 

20.6 3.404 2.5 -4.77 

20.8 3.401 3.2 -4.53 

25.0 3.353 5.7 -3.99 

29.9 3.299 13,1 -3.14 

33.1 3.265 17.6 -2.86 

35.2 3.243 23.8 -2.53 

38.9 3.204 36.8 -2.14 

39.0 3.203 37,2 -2.13 

®At 1 M ionic strength (LiClO^); HgOg and Co(NH2)gCl^^ were used 

as oxidants; solutions were saturated with di-isopropyl ether and 

[H*] = 0.10 M in each experiment. 
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Figure 1-15. Plot of versus [Oxidizing Scavenger] for the 

reactions of CrCfCHgifi-CgHyjOH^* with the oxidants: 

Fe^"^ (•).  Cu2+ (e) and Co(NH2)gCl2+ (®) 
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Figure 1-16. Eyring plot for the decomposition of CrCfCH^jfi-CgHyjOH^* 

under homolysis conditions 
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Figure 1-17. Eyring plot for the decomposition of CrCfCHgjft-C^HgjOH^* 

under homolysis conditions 
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Figure 1-18. Plot of versus [Oxidizing Scavenger] for the 

reactions of CrCfCHgjgOCHfCHgjg^^* with the oxidants: 

Fe3+ (•),  Cu2+ (e),  Co(NH3)gCl2+ («) and Co(NH3)5Br^^ 

(A) 
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Figure 1-19. Ej/ring plot for the decomposition of CrCfCH^jgOCHfCHglg^* 

under homolysis conditions 
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HCIO^ solution and revealed approximately equal amounts of 2-propanone 

and 2-propanol were formed. 

Photochemical generation of CrC(R^R^)OH^^ 

In addition to producing a-hydroxyalkylchromium(III) complexes by 

the MFR method, a photochemical route was developed. We have found 

that aqueous acidic (lO'^-l M HCIO^) solutions containing Cr^* (2-15 mM) 

and acetone (1-3 M) with or without added 2-propanol produced 

a-hydroxy-2-propylchromium(III) when irradiated with uv radiation 

(65-69), The identity of the organochromium formed was confirmed by 

its rate constants for acidolysis and homolysis (Table 1-12), in 

comparison with the same species prepared by chemical reactions. A 

spectrum of the product obtained by photolysing an acetone solution 
2+ 

containing Cr is shown in Figure 1-20. Yields of up to ~20% could be 

obtained by this route. 

Similar results were obtained by flash photolysis of solutions 

containing 2-butanone/2-butanol mixtures in aqueous HCIO^ containing 
2+ 2+ 

Cr . These experiments also indicated CrCHgCHg was also formed in 

an appreciable yield. A very slow acidolysis rate was observed which 
2+ 

was consistent with CrCHgCHg . It was also found that addition of 
2+ 

Co(NH2)gCl did not increase the observed rate, again consistent with 
?+ 

CrCHgCHg being the other species formed. 

Acid rearrangement of CrC(CH3)20CH(CHg)2^^ 

The study of the acidolysis reaction of CrC(CH2)20CH(CH2)2^^ 

revealed an unexpected cleavage reaction of the bound ether ligand. 
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F i g u r e  1-20. Electronic spectrum of (HgOjgCrCfCHgjgOH^* generated 

photochemically from an aqueous acetone solution. 

Conditions: (£ = 1 cm) [Cr^^jg = 2 x 10"^ M, 

[acetonelg = 0.02 M; 300 J unfiltered uv xenon flash of 

'v30 ps duration. An identical cell which was not 

irradiated was used as a reference 
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The conclusion that this complex was undergoing a unique decomposition 

was supported by three main observations J Each of these pieces of 

supporting evidence has been treated under a separate heading. 

Effect of The decomposition of CrCfCHgjgOCHfCHgjg^* was 
2+ 

found to occur at essentially the same rate as for CrCfCH^jgOH at 

25.0°C (Tables 1-3 and 1-19). The acid-dependent term, kg, was 

identical from the two kinetic studies (k = 4.7 x 10'^ s"^). This 

piece of evidence alone would not be sufficient to prove that 
2+ 

CrCfCHgjgOCHfCHgjg decomposes by a unique mechanism among the ether-

bound complexes, but it provided the first clue that something unusual 

was occurring. 

Variation of homolysis conditions Experiments which were 

performed on the D-132 multi-mix system indicated that CrCfCH^jg-

had a homolysis rate of 5.77±0.15 sec"^ at 25.0°C (see 

Results, Homolysis Reactions). This rate was independent of both the 

nature and concentration of the oxidizing agent which has been shown 

to be true for other Sj^l mechanisms (17). Because of the indication 

from the acidolysis rate constants that CrC(CH2)20CH(CH2)o^^ might be 
?+ 

converted to CrC(CH2)20H some additional homolysis experiments were 

carried out. In these homolysis experiments, the CrC(CH2)20CH(CH2)2^^ 

was formed in a 2 cm quartz cell which had been carefully deoxygenated 

Product analyses (g.c.) also indicated that 2-propanol was 
produced as an organic product, providing additional evidence for 
ether-cleavage. 
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Table 1-19. The kinetics of reaction of CrCfCHgjgOCHfCHgjg^* under 

acidolysis conditions® 

[h+]/m 10^ k/s"l 

0.10 3.94 ± 0.07 (3) 

0.30 4.94 ± 0.09 (2) 

0.50 6.21 ± 0.13 (3) 

0.89 7.66 ± 0.08 (5) 

®At 25.0°C; u = 1.0 M (LiClO^); ^0.05 M isopropyl ether. The 

numbers in parentheses represent the number of replicate 
determinations. 
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by injecting a known amount of HgOg into the cell which contained Cr^*, 

isopropyl ether, HCIO^, and LiClO^. The absorbance of the yellow 

solution was then recorded prior to injecting a known amount of 

CotNHgjgCl^^ which was in excess over 2[Cr^^]. The result of this type 

of hemolysis experiment was quite conclusive, a rate constant of 

M).12 - 0.13 sec"^ was observed in each case at %25 0°C and the 

absorbance change observed accounted for 70-90% of the total absorbance 

change expected. This result indicated that CrCtCHgjgOCHfCHgjg^* which 

was first formed (as indicated by its unique hemolysis rate of 
_ 1 p i  

5.77 sec" ) was rapidly converted to CrCfCHgjgOH as indicated by the 

hemolysis experiments performed on the Gary 219. One may estimate the 

boundary conditions for this conversion process to be slower than 

'\^1 sec"^ but faster than 0.05 sec'^ at 25.0°C, 0.1 M and 1.0 M 

ionic strength. 
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DISCUSSION 

Acidolysis 

The acidolysis reactions of the a-hydroxyalkylchromium(III) com­

plexes which were the focus of this study were, in general, much faster 

than the reaction of the simpler analogs previously investigated (9). 

As far as can be determined from this study and previous work, the prod-
3+ 

ucts of aquation are CrfHgO)^ and the co-solvent alcohol or ether 

1 2 
HC(R R )0H. The acidolysis reaction may be viewed as a dissociation of 

a carbanion from the Cr(III) center. Clearly, formation of a free car-

banion under the reaction conditions would not be favored, but it is 

useful to view the reaction in this manner. Formally then, protonation 

of the carbanion would ultimately lead to the observed products. This 

type of heterolytic cleavage of a metal alkyl bond resulting in loss of 

R- by reaction with a proton has been postulated for other alkyl metal 

systems important in catalysis (70). 

In considering the intimate mechanism, one might argue that the 

pendant -OH group could play a special role in this reaction by hydrogen 

bonding to one of the incoming reactant molecules (HgO). This would 

bring the reactant in close proximity to the reaction center thus 

presumably favorably increasing the likelihood of reaction. This may 

-t2+ 

X 
ho 

r' 
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be viewed as shown after Schmidt ^ al^. (9) and might serve as well as 

any figure for our conceptualization of what the activated complex must 

look like for the acid-independent pathway. It is important to note, 

however, that simple alkylchromium(III) complexes such as ethylpenta-

aquochromium(III) are also subject to acidolysis reactions which have 

two pathways, one zero order and one first order in acid concentration. 

In order to separate polar and electronic contributions, three 

complexes which have ligands of very similar steric bulk have been 

listed in Table 1-20. Using the Taft values cited, one would predict 

2+ 
that CrCHgCHg should be much more susceptible to acidolysis than 

2+ P+ 
CrCHgOH , since the a-carbon in CrCHgCHg should have more electron 

density than in CrCHgOH^* and CrCHgCl^*. Also, CrCHgCl^* should be the 

most stable complex of the three. Only the latter statement holds true: 

CrCHgCl^* is the most stable towards acidolysis, but CrCHgOH^* is about 

three times more susceptible to acidolysis than CrCHgCHg^*. This may 

Table 1-20. Comparison of acidolysis rate constants for complexes of 
similar steric bulk 

Complex a*® Acidolysis rate constants 

k^/s-l kg/m-l s-"" 

CrCHgClZ*^ 1.05 <10"^ < 10"^ 

CrCHpOH^"^ 0.55 6.6 x 10"* 4.65 x 10'^ 

CrCHgCHg^"^ -0.10 2.2 x 10"* 1.15 x 10"* 

^Values from Reference 71. 

^Rate constants estimated; this complex may be kept for months 
at -10°C. 

^Reference 64. 



www.manaraa.com

71 

be due to hydrogen-bonding by the -OH group which assists in bringing 

an electrophile into proximity with the a-carbon. 

Now turning to the complexes listed in Table 1-3, it is apparent 

that for the series of a-hydroxyalkyl complexes the kinetic stability 

of these complexes to acidolysis decreases as the a-carbon becomes more 

electron-rich. In fact, as the steric crowding at the a-carbon 

increases, the acidolysis rates also increase. One might argue that 

there is even a steric acceleration of the reaction; (compare 

CrCfCHajgOHZ* = (3.3 x 10"^ + 4.7 x 10"^ [H+]) s"^ versus 

CrC(CH2)(C2Hg)0H2+ k^ = (8 x 10'^ + 0.47 [H+]) s"^. The steric 

acceleration seems to be most pronounced for the kg pathway. This very 

large enhancement of the kg term is observed for all of the complexes 

which have a g-CH^ group with a quaternary a-carbon as in 

CrC(CH2)(C2Hg)0H^^. It is not observed, however, when only a G-CHg 

group is present as in CrCHfCgHgjOH^* (k^ = 3.17 x 10"^ + 2.14 x 10'^ 

[H^]). This steric enhancement may reflect the interactions between 

the g-CHg group(s) and water molecules which are coordinated to the 

chromium center and cis to the alkyl group. Space-filling models 

indicate that there is much more steric interaction with the 

-[(CHgjfCgHgiOH ligand as opposed to -[(CHgjgOH. Possibly, these 

interactions promote the formation of a preferred conformer which is 

more susceptible to attack by an incoming electrophile such as HgO*. 

Many arguments may be put forth to explain the large steric acceleration 

observed for g-CHg substituents, but there seems to be little justi­

fication for further speculation. At least all of the data clearly show 
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that the presence of a B-CH^ group in the alkyl ligand (with a 

quaternary carbon) causes a very pronounced increase in the rate con­

stant for the acid-dependent acidolysis pathway. Most likely, the 

steric acceleration is due to partial release, in the transition state, 
2+ 

of steric compressions in the ground states of CrCfCHgjfCgHgiOH , 

CrCfCgHgjgOH^* and CrCfCHgjfi-CgHyjOH^^ which could result from inter­

action between the B-CH^ groups and cis water molecules bound to Cr^^^. 

Although the kg pathway is greatly influenced by the B-CHg 

substituents as presented in the preceding discussion, the k-j acid-

independent pathway seems only slightly influenced. This lack of 

steric acceleration may be due to the possibility that the k^ pathway 

goes by transfer of a proton from a coordinated water as shown below. 

(This seems quite likely considering the proximity of the cis water 

molecules to the a-carbon and the greater acidity of coordinated water 

as opposed to bulk solvent water as shown below.) Thus, the internal 

pathway would probably not be as sensitive to the g-CHg substitution as 

a possible external pathway might be. 

H,0 —Cr—-C(R^R^)OH^'^ -> CH,0).Cr0H^* + HC(R^R^)OH 

H 

The study of CrC(CH2)20CH(CH2)2^^ under acidolysis conditions was 

found to have an unusual twist. This species was found to undergo a 
2+ 

rearrangement to CrC(CH2)20H in aqueous perchloric acid at room 



www.manaraa.com

73 

temperature. A possible scheme for this cleavage mechanism is 

presented in Scheme 1.6. The acid-catalyzed cleavage of ethers which 

Scheme 1-6 

+H"^ H 
cr^^^c(ch3)20ch(ch3)2^'^ [cr^^^c (ch3)20ch(ch3)2]^'*" 

criiic(ch3)20h2+ + @ch(ch3)2 

h2o 

h0ch(ch3)2 + 

has been known for over a century (71,72), requires very vigorous 

conditions. One mechanism proposed the formation of a carbonium ion 

after protonation of the ether oxygen. The order of reactivity of 

dialkyl ethers is: (CH3)20 < (CgHgjgO < ((CHgJgCHjgO < ((CHgjgOgO, 

which reflects the ease with which the carbonium ion may be formed, 

(CHgjgC* being much more stable than (73). 

Other ether cleavage reactions have been noted. In a very strong 

acid medium (FS03H-SbFg), the cleavage of ethers has been found to be 

very facile (73). Alkyl ethers which contain a tertiary group cleave 

readily even at -70°C in this strong acid medium, whereas n-alkyl ethers 

are stable at much higher temperatures for long periods of time (73). 

Similar observations have been made for some protonated alkyl 

carbonates, which also indicate that the ease of cleavage of the -C-O-C 

bond is very dependent on the nature of the carbocation formed (74). 

The difference in reactivity between CrC(CH3)20CH(CH3)2^^ and 

CrCH(CH3)0C2Hg^^ may thus be due to the lower stability of ^CHgCHg 
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compared to It seems possible from the arguments presented 
?+ 

here that preparation of CrCHgOCtCHg)^ from methyl-t-butyl ether should 
Ox 

result in its facile conversion to the known CrCHgOH . This might be a 

good test of the hypothesis presented. 

The kg, acid-dependent, pathway for all of the complexes from this 

study have negative values similar to the literature value for 

CrCfCHgjgOH^* (Table 1-4). If the AS"^ is considered to be the change in 

disorder of the system in going from the ground state reactants to the 

transition state then the modest negative AS'^ values found for these 

reactants indicate that more order is created in forming the transition 

state. This is exactly the situation expected for reaction between 

unipositive and dipositive ions reacting to create a tripositive 

transition state (75). This may be partially due to an increased 

ordering of solvent around the tripositive cation which is forming in 

the transition state. 

The values of AH"^ determined parallel the reactivity of the 

complex towards HgO*. Thus, the complex which is least stable towards 
?+ 

acidolysis (CrCfCgHgjgOH ) has the lowest enthalpy of activation 

(12.1 kcal/mol). This lower AH"^ may be a reflection of the weaker 

chromium-carbon bond in the highly substituted complexes. This subject 

is dealt with more quantitatively in the Homolysis section. 
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Photochemical Syntheses 

2+ 
The photochemical generation of CrCfCH^jgOH and 

2+ 
CrCfCHgjfCgHgjOH from aqueous acetone and 2-butanone solutions 

probably occurs by the following scheme; 

Scheme 1 r-7 

0  0 -
II I 
C hv . C-

l' \ 2 l' \ 2 R' R' R"^ 

0- OH OH 
I I I 
C- + CH > 2 C-

1 \ 2 1 \ 2 1 \ 2 
r' r"^ r' r'^ r' r^ 

OH 

cr^* + c" > crc(r^r^)oh^"^ 

r^ ^r^ 

In Scheme 1-7, the first step corresponds to the excitation of the 

ketone to the triplet state (65-68), which may then abstract a hydrogen 

?+ 
atom and combine with Cr in the last step. 

In some experiments in which no hydrogen donor was added to 

acetone solutions, it was likely that the acetone itself may act as a 

donor (68). Besides the chemistry shown in Scheme 1-7, a side reaction 

occurred in the experiments with 2-butanone to produce a species which 
2+ 

reacted very much like CrCHgCH^ . This species was probably formed 
2+ 

by the reaction of Cr and ethyl radicals, the ethyl radicals 

presumably originating from the well-known a-cleavage of the excited-

state triplet ketyl species (69). 
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Hemolysis 

Although a large number of pentaaquochromium(III) complexes have 

been characterized, the homolytic decomposition of these complexes has 

been previously investigated only for a variety of aralkyl complexes 

(17-24). We have found the homolysis of the chromium-carbon bond to be 

a general reaction of the a-hydroxyalkylchromium(III) and ether-derived 

complexes. In fact, the primary focus of this work was to study the 

homolysis reaction. 

While researching the literature in preparation for this thesis, 

it became clear that many workers have previously recognized a need for 

more kinetic and thermodynamic data relating to metal-alky1 bonds (76, 

77). The quantitative results of our kinetic study of the homolysis 

reaction allows a quantitative as well as qualitative discussion of 

chromium-carbon bond strengths to be made. 

Using the homolysis rate constants in Table 1-5 and the k -j 

values which were available in the literature (13), calculations of 

Kgq for the equilibrium shown in Equation 1-26 were made (Table 1-20). 

cr-c(r^r^)oh^'^ cr^* + .c(r^r^)or (1-26) 
-1 

For those compounds for which k_^ has not been determined, an estimate 

was made based upon the degree of substitution on the a-carbon and a 

comparison with known k_^ values. These calculations of neglect 

a more detailed description of the homolysis reaction which would 

include a solvent-caged pair as a precursor to the free radical 
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formation. Usually solvent effects are less pronounced for radical-

forming reactions than in analogous heterolytic reactions (78). 

CrC(R,R')0R"2+ ^ [Cr-• •-CIR.R')0R"]^'^ Cr^* 

+ .C(R,R')OR" (1-27) 

One must recognize, however, that involvement of the solvent in the 

transition state could be reflected in the activation barrier. If this 

caged intermediate were important in the hemolysis of the Cr-C bond 

then by microscopic reversibility one would expect it to also be 

important in the formation of the Cr-C bond. This could possibly be 

tested by varying the viscosity of the solvent, but such experiments 

would probably not be very practical for experimental reasons with 

this series of complexes. 

The values of the calculated equilibrium constants shown in Table 

1-21 indicate that for all of these complexes the equilibrium lies far 

to the left. This was not an unexpected result since the radical 

products of the decomposition of these complexes by chromium-carbon 

bond hemolysis are less stable than the complexes themselves. These 

calculated equilibrium constants were used to make a linear free 

energy relationship (LFER) from a plot of log versus log 

The plot yielded a satisfactory line with a slope of approximately 0.9 

(Figure 1-21). The fact that a straight line was obtained was not 

altogether surprising since we believe all of these complexes undergo 

hemolysis in much the same way, by the Sj^l mechanism. Much more 

revealing perhaps was the slope of approximately unity. (One may also 
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Table 1-21. Thermodynamic parameters for the hemolysis reaction; 
j/ 

CrC(R^R^)OR^"^ Cr^"^ + •C(R^R^)OR 

(#) Complex *^hom^^"^ s~^ Kgq(calc)/M Act/kcal mol"^ AG°/kcal mol~^ 

(1) CRCHGOH^"^ 3.7 X 10-5 1.6 X IQS 2 .3 X 10-13 23.5 17.2 

(2) CRCH(CH2)0H2+ (8.5 ±0.3) X 10"^ 7.9 X 10^ 1 .1 X 10-TT 21.6 15.0 

(3) CRCH(C2HG)0H2+ (1.01 ±0.04) 

C
O

 1 o
 

X
 ~7.9 X 10^* 1 .3 X 10"" 21.5 14.9 

(4) CRC(CH3)20H^'^ 0.127 ± 0.003 5.1 X 10^ 2 .5 X 10-9 18.7 11.7 

(5) CRC(CH^)(CPHC)OH 0.92 ± 0.03 <5 X 10^* 1 .8 X 10-8 17.5 10.6 

^Values at 25.0°C. 

^Reference 13; values at 22±2°C, (*) indicates estimated value. 

^Values calculated from = -RT In k/6.21 x 10^^ s~\ 

^Values calculated from AG° = -RT In 
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Table 1-21. (Continued) 

(#) Complex s"^ Kg^(calc)/M AG^/kcal mol"^ AG°/kcal mol"^ 

(6) CrC(C2H5)20H2+ 8.39 ± 0.09 <5x10^* 1.7x10"^ 16.2 9.3 

(7) CrC(CH2)(i-C2Hy)0H2+ 21.6 ±0.1 <5x10^* 4.3x10"^ 15.6 8.7 

(8) Cr(CH3)(t-C4Hg)0H2+ >300 <5 x lo/* >6 x 10"® ~14.0 <7.2 

(9) CrCH20CH3^"^ <10'^ >3x10^* ^lO'^* >25.6 %19.0 

(10) CrCH(CH3)0C2H5^"^ 2.04x10"^ 3.4x10^ 6.0x10'^^ 21.1 13.9 

(11) CrCfCHgJgOCH^CHgjgZ* 5.77 ± 0.15 <3x10^* %2 x 10'^ 16.4 %9.0 
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'°g"<hom/m' 

Figure 1-21. Plot of log k versus log K for the homolysis reaction 
of the a-hydrowal ky 1 chromi um( 111 ) complexes 
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argue the linear fit with a slope of about one was required because of 

the small variation in k ^.) 

Langford made a similar plot for the results of various workers 

studying the aquation of [CofNHgjX^^J species (79) as in Equation 1-28. 

k 
Co(NH2)gX2+ + HgO \ Co(NH2)gH203+ + X" (1-28) 

-28 

Langford reasoned that a plot of log kgg versus implied that 

the relationship shown in Equation 1-29 must exist. The value of a is 

AAG^ = a AAG° (1-29) 

the slope of just such a plot and a value near one was proposed to 

indicate that the transition state should closely resemble the immediate 

products. In the case of the hemolysis of the a-hydroxyalkyl-

chromium(III) complexes, the value of a near unity suggests that the 

transition state closely resembles the products. The concept that the 
2+ 

transition state for the chromium-carbon bond homolysis resembles Cr 

and «R also is in harmony with Hammond's postulate. Hammond declared 

that for a highly endothermic reaction, such as a reaction producing 

free radicals, the transition state will closely resemble the 

products (80). It would seem that Hammond's postulate may be applied 

to the homolysis reaction as further support for the contention that 

the transition state closely resembles the products. One might view 

this transition state as being a loosely bound organic radical to a 

Cr(II)-like center. 
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OH 
=f 2+ 

2 
OH R 

/ 
HoO -Cr •C OR" 

hgo 

OH 
2 

A further question, somewhat more subtle, concerns the possible 

role of an entering water ligand to complete the primary coordination 

sphere around the chromium(II) ion. Hammond (80) and Langford (79) 

both addressed this question. According to Hammond "...the entering 

group will be strongly bound in a transition state resembling the 

product only if the reaction is highly endothermic." Langford reasoned 
p i  

that for the aquation of the [CofNHgjX ] complexes since AG° '^>0, the 

entering water was at best only weakly bound in the transition state 

and thus favored a dissociative mechanism. 

The values of AG° for the homolysis reactions of the a-hydroxy-

alkylchromium(III) complexes are greater than zero. If one considers 

these reactions "highly" endothermic in the sense meant by Hammond, 

the entering water ligand would have to be considered tightly bound 

in the transition state. Considering what is known about the system 

at hand, it seems likely that the entering water ligand is not tightly 

bound in the transition state. Several chemical facts speak to this 

point. First of all, the inorganic product of the homolysis reaction, 

2+ 4 
Cr , is a d Jahn-Teller distorted ion in which two of the water 

molecules are weakly coordinated. The very fast water-exchange rate 
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2+ 
of Cr also points out how weakly bound the water ligands are. 

Secondly, one might expect the entering water ligand to favor a small 

or even negative entropy of activation as in the case of acidolysis 

(Table 1-4), but all of the values measured for the hemolysis 

reaction were highly positive. Finally, it may be concluded that an 

incoming water ligand would be only loosely bound due to steric con­

straints around the chromium-carbon bond (vide infra). 

The activation parameters for the hemolysis reactions of all of 

the complexes determined in this study are summarized in Table I-IO. 

In general, these values have several rather interesting features. All 

of the complexes have a rather large, positive AS^. In simplest terms, 

this may be rationalized as resulting from a creation of greater 

disorder in forming the activated complex. This would seem to be 

consistent with the transition-state pictured on page 82. There also 

seems to be a trend to smaller absolute values of with the bulkier 

ligands. This may be due to an increase in the S° of the reactants in 

the ground state relative to the transition state, perhaps due to 

hydrophobic interactions with the solvent. 

The enthalpies of activation, AH^, are also positive. This would 

be expected for a process involving the breaking of a metal-carbon 

bond. Furthermore, the magnitude of AH"^ should be a reasonable 

estimate of the chromium-carbon bond strength. If the solvation of 

the organic radical and the entering of a sixth water molecule into the 
2+ 

coordination sphere around Cr do not contribute significantly to the 

AH^, and if the AH"^ for the reverse process of Cr^* and R* recombining 

k 
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is estimated to be 'X'O, then should indeed be a measure of the bond 

dissociation energy. We may view the reaction as proceeding along a 

reaction coordinate as shown in Figure 1-22. Considering AH'^ to be a 

good estimate of the strength of the chromium-carbon bond, it may be 

useful to consider the values we estimate from this study. The values 

of AH'^ determined range from %32.0 to 21.6 kcal/mole. The next 

question seems obvious, are these reasonable bond energies? Although 

literature values seem scarce in the area of pentaaquoalkylchromium-

(III) complexes, some other transition metal-carbon bond energies seem 

to fall into the same range. A few of these values are summarized 

below. 

Complex Estimated bond energy/kcal mol"^ 

(CGOgMnCHg ~30 (25.3 - 30.8) (Ref. 81,82) 

(COOgMnCHgCgHg ~25 (Ref. 81) 

(C0)gMnC(0)CgHg ~24 (Ref. 81) 

Endicott e^ a]_. estimated the bond energies of cobalt-carbon bonds for 

a series of cobalt complexes of tetraaza macrocycles. Their estimates 

ranged from 33 to 47 kcal/mole, varying with the nature of the macro-

cycle (83). It would seem from these limited data that the bond 

strengths which we have estimated from our study are in reasonable 

agreement with some other first-row transition metal-carbon bonds. 
o 

The tremendous range of hemolysis rates (~10 ) prompted a 

consideration of the substituent effect on the homolysis rate. 

Substituent effects have been widely applied to organic reactions 

(84-86), but much less so for organometallic systems. One difficulty 
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E(H,0),=Ci—C(R'r2)OH2+J 
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REACTION COORDINATE 

Figure 1-22. Reaction coordinate diagram for the homolysis reactions; 
reactants at A, products at B 
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encountered in a consideration of substituent effects is a quantitative 

separation of the steric and electronic contributions. An attempt has 

been made to consider the substituent effects for homolysis of the Cr-C 

bond. 

In a recent article, Ruchardt and Beckhaus reported a correlation 

between the free energy of activation for homolytic cleavage of C-C 

bonds and the strain enthalpy in the ground state (87), These workers 

were quite successful in sorting out the steric and electronic 

substituent effects for several homologous series of hydrocarbons. The 

strain enthalpy in the ground-state of the hydrocarbons was calculated 

by using force-field calculations (87). The strain enthalpy, H^p, was 

defined as the difference between the standard enthalpy of formation 

in the gas phase and a calculated strain-free "normal heat of 

formation" (Ref. 87, p. 431). We have attempted to treat the homolytic 

cleavage of the Cr-C bond in an analogous manner to the Ruchardt and 

Beckhaus treatment of C-C homolytic cleavage. In order to treat the 

Cr-C system in an analogous manner, several assumptions had to be made. 

Because of the nature of the data available for the magnitude of the 

strain enthalpy in the ground state, it was necessary to assume that an 

-OH group was sterically similar to a -CHg group. This assumption is 

similar to one made by Ruchardt, wherein a -CN group was assumed to be 

sterically equivalent to a -CHg group (87). 

A second assumption which was necessary involved the consideration 

of the inorganic portion of the complex. Since that portion of the 

complex (the Cr^^^ center and its five coordinated water molecules) 
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remains constant throughout the series, its contribution to the ground 

state strain enthalpy must be considered constant. This situation may 

be contrasted with the case of homolysis for the simply hydrocarbons 

which may be viewed as follows: 

r' 

-> 2 R^—C- (1-29) 

P 
12 3 

In this case, as the steric bulk of R , R and R increases, the 

bulk on both sides of the central C-C bond increases, whereas in the 
1 2  2 +  

CrC(R ,R )0R case, the inorganic portion of the complexes remains 

12 3 
constant as R , R and R vary. To allow for this, the ground-

I / ,R^ I / R"* 
— Cr^^^—C—R^ -•> —Cr^I + (1-30) 

/| V /| 

state strain enthalpy for the chromium(III) complexes is assumed to be 

proportional to the square-root of the ground-state strain enthalpy 

for the symmetrical hydrocarbons (Equation 1-31). The values 

agcr-c (1-31) 

of and are summarized in Table 1-22 and a plot of versus 

/H^p for the a-hydro%yalkylchromium(III) complexes has also been made 

(Figure 1-23). 
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Table 1-22. Estimation of the steric strain in CrC(R^,R^)OR^^ complexes 

Complex R* R^ R2 kcal/mol (kcal/molr 

CrCHgOHZ^ -CH3 H H 23.5 0 

CrCH(CH3)0H^'^ -CH3 -CH3 H 21.6 1.6 

CrCHtCgHslOnZ* -CH3 -C2H5 H 21.5 >1.6 

CrCfCHglgOH 2+ .CH3 -CH3 -CH3 18.7 2.6 

CrC(CH2)(C2Hg)0H2+ -CH3 -CH3 -C2H5 17.5 3.5 

CrCfCgHgigOnf* -CH3 -C2H5 -C2H5 16.2 4.5 

CrC(CH2)(i-C3Hy)0H2+ -CH3 -CH3 i-CsHy 15.6 4.7 

CrC(CH2)(t-C4Hg)0H2+ -CH3 -CH3 t-C^Hg ~14.0 6.7 

CrCHgOCH 2+ -CgHg -H -H ~25.6 0.0 

CrCH(CH3)0C2H5^"^ r\-C^Hy -H -CH3 21.1 >1.6 

CrC(CH3)0CH(CH3)2^'^ -CHgCHfCHjJg -CH3 -CH3 16.4 4.15 

®R is taken to be -CH^ for an -OH group (see text DISCUSSION); for the ether complexes -OR is 
taken to be -CHgR. 

^These values were obtained by taking the square-root of the appropriate value in reference 87. 
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Figure 1-23. Plot of AG^/kcal mol versus /H_ for the homolysis reactions. The numbering 
?+ 9+ 

scheme is from Table 1-21; A refers to CrCHfCH^jg , B refers to CrCHgCgHg 
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Although there is quite a degree of scatter in Figure 1-23, there 

seems to be a good correlation between the /FÇ^ and the for the 

hemolysis of the Cr-C bond. 

Because this analysis considers only the steric contributions of 

the organic ligand as the ligands become bulkier, it seems plausible 

tnat the steric substituent effects are dominant over electronic 

effects. This result seems rather surprising since one might expect 

that radical stabilities would also play a key role in determining the 

rate of hemolysis. Clearly as the organic ligands become more bulky, 

the radical stabilities also increase due to increased delocalization 

of the odd electron. The presence of unpaired electrons on the oxygen 

atom also can be invoked in resonance structures which might help 

stabilize a-hydroxyalKyl radicals relative to simple alkyl radicals 

(88). If electronic effects also were important, one might expect a 

plot of log (k^/kg) versus Taft's a* polar substituent parameter to be 

linear for the series of complexes studied here. In this equation, 

log i-^) = p*o* (1-32) 
*^0 

the a* values are defined as Taft substituent constants for the 

electronic contribution of the substituents (89,90). The p* value may 

be evaluated from the slope of a plot of log (k/k^) versus a*. The 

significance of the p* value has been related to the mechanism of 

reactions (91). 

Values of o* were obtained from a recent compilation of 

substituent parameters (Table 1-23) (92). A plot of log (k/k^) 
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Table 1-23. Taft substituent effect 

Complex K/S-T log (k/kcH^o^) 

CrIII-CHGOH 
0.55 

(+(0.51)} 3.7 X LO'S 0.0 

-CHFCHGJOH +0.46 8.5 X 10"4 1.45 

-CHFCGHGJOH +0.45 1.0 X 10"3 1.52 

-CFCHGIGOH 
+0.35 

( (0.32)} 0.127 3.63 

-CFCHGJFCGHGJOH +0.30 0.92 4.49 

-CFCGHGJGOH +0.28 8.4 5.45 

-[(CHGJFI-CGHYJOH +0.29 21.6 5.86 

-CFCHGIFT-C^HGIOH +0.22 >300 7.0 

®a* values from Réf. 92; numbers in parentheses indicate both 
values were listed. 

versus o* is shown in Figure 1-24. Although the data apparently 

correlate reasonably well with the Taft a* parameter, the value of p* 

from the plot is calculated to be -25. This value is far from the 

range of normal p* values, typically much less than 5. One might 

argue quite effectively that the correlation observed between 

log (k/k^) and a* is mainly due to the fact that a* parallels the 

steric bulk of the substituents and, therefore, the correlation is 
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Figure 1-24. Plot of attempted Taft correlation of homolysis rate constants. 
The numbering scheme is from Table 1-21 
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really due to the steric effect once again. Others have commented on 

the general applicability of the Taft relation and the use of a* values 

(93,94). It may well be that the Taft relation is simply not a good 

model for the reaction at hand. To test this idea, we considered 

homolysis of CrCHfCH^jg^^, a* for 2-propyl being -0.19 (84,92). If 

the electronic effects were dominant, one would expect to be able to 
2+ 

plot the homolysis rate for CrCH(CH2)2 in Figure 1-24, and presumably 

it would be somewhere near the line. Actually, from Figure 1-24 
2+ 

CrCH(CHg)2 would be expected to have an extremely high homolysis 

rate, (as would CrCHg^* and CrCgHg^*), but CrCH(CH2)2^^ has a known 

homolysis rate of 1.78 x 10'^ sec"^ (95) and CrCHg^* and CrCgHg^* 

presumably homolyze so slowly that homolysis has not been detected as 

an important reaction. These "tests" of the applicability of the Taft 

relationship to this case seem to indicate that the correlation 

observed most probably exists due to the aforementioned parallel 

between steric and electronic factors in this reaction. 

Having applied these "tests" to the attempted Taft correlation, 

it seems only fair that a similar test should be applied to the steric 

relationship already presented based upon the correlation between 

and /Hgp. Using a value of 1.6 for the /FÇ^ for CrCH(CH2)2^^> from 

RUchardt's and Beckhaus' data (87), one would predict the homolysis 

rate from Figure 1-25 to be between ~10"^ and ^10"^ sec"\ in excellent 

agreement with the experimental value already quoted. One also would 
2+ 2+ 

predict CrCHg and CrCHgCHg to be very stable towards homolysis as 

they indeed are. In fact, although the exact values for a -CH20 



www.manaraa.com

94 

substituent are not available in reference 87, one may estimate from 

the data available that for -CHg# would be '\,3, and therefore the 

for this substituent would be ~1.7, once again predicting a 
-1 

homolysis rate of MO" sec" from Figure 1-26, again in very good 

agreement with the experimentally determined value of 2.6 x 10" sec" 

(17). 

In conclusion, we have examined the cleavage of the chromium-

carbon bond by two modes, heterolytic and homolytic. The heterolytic 

mode, acidolysis, indicated that the bulky organic ligands were more 

susceptible to acidolysis than the smaller, less substituted organic 

groups. A similar finding was made for the homolytic reactions of the 

a-hydroxyalkylchromium(III) and a-alkoxyalKylchromium(III) complexes. 

We have found a correlation between the rate of homolysis and the 

degree of strain induced in the ground state by steric interactions 

between the substituents on and, presumably, the water molecules in 

the c^s positions on the chromium(III) center. Space-filling models 

show a particularly strong degree of interaction when isopropyl or 

tert-butyl groups are substituted on in conjunction with a methyl 

group. These are also the two complexes which are the least stable 

towards homolysis. More studies of this kind are needed to generate 

sufficient data to further separate both steric and electronic effects 

in regard to the metal-alky1 bond. 
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b. reactions with cu^* or 
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INTRODUCTION 

2+ 
This section of the thesis deals with the reactions of Cu and 

3+ 
Fe with the a-hydroxyalKylchroniium(III) complexes which were 

introduced in the preceding section. Bakac and Espenson have 
2+ 3+ 

recently reported the reactions of Cu and Fe with a number of 

a-hydroxyalKylchromium(III) complexes (16,42). Some of their findings 

will be introduced to lay a foundation for a discussion of the results 

found here. Because the scope of this investigation was limited to a 

kinetic study, the reaction stoichiometry and products were presumed 

to be analogous to what was found in the prior study (42). 

The following stoichiometry, Equation 1-33, was previously 

determined for the reaction of Fe^* with CrCHgOH^* (16,42). It was 

2 Fe^* + CrCHgOHZ* > 2 Fef* + Cr^* + + HCHO (1-33) 

2+ 
also shown that Cr is formed as an intermediate which quickly reacts 

3+ 
with Fe in a redox reaction. A 2:1 stoichiometry was also found for 

2+ 
Cu reactions. 

2+ 3+ 
These reactions of Cu and Fe with a-hydroxyalkylchromium(III) 

complexes are unique among organochromium chemistry. Simple alkyl-

chromium(III) complexes do not react with oxidants. (It should be 

noted, however, that isopropy1 chromium does react with oxygen (96)). 

Even the aralkylchromium(III) complexes only react with oxidants 

indirectly via hemolysis (17-23), 
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An attempt will be made to explain these differences in 

reactivity for organochromium complexes. Mechanisms will also be 
2+ 3+ 

presented in an attempt to adequately describe the Cu and Fe 

reactions with a-hydroxyalKylchromiumClII) complexes. 
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EXPERIMENTAL 

Materials 

Reagents 

Organochromium complexes The organochromium complexes used in 

this study; CrCH(C2H5)0H^'^, CrC(CH3)(C2H5)0H^'^, CrC(CH2)(i-C2Hy)0H2+ 
2+ 

and CrC(C2Hg)20H were prepared by the modified Fenton's reagent 

method as described in Part I.A. The characterization of these 

complexes has also been treated in the first section. 

Inorganic reagents Most of the inorganic reagents used were 

introduced in the first section. Those reagents which were not 

previously introduced are cited here. 

Copper(II) perchlorate solutions A stock solution of 

Cu(C10^)2 aq prepared by dissolving CuO wire (Fisher Scientific 

Co.), containing a solid copper metal core, in HCIO^ ('\,3 M) over a 

period of several days. After the CuO had dissolved, the remaining 

metal residue was filtered off and the mother liquor, Cu(C10^)2 gq 

solution, collected. The solution was then clarified with diatomaceous 

earth which was subsequently removed by filtration. Alternatively, 

Cu(C10^)2 gq solutions were prepared by dissolving the solid hydrate in 

perchloric acid (G. F. Smith), with identical results being obtained 

regardless of the method of preparation. 

Iron(III) perchloratê solutions Solutions of FefClO^)^ in 

HCIO^ were prepared and analyzed by a standard literature procedure 

(.97). Alternatively, solutions were prepared by dissolving the 
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FelClO^)^ hydrate (G. F. Smith Co.) with identical results 

obtained. 

Methods 

Analyses 

The concentrations of organochromium species were usually esti-
2+ 

mated from absorbance measurements. The Cu concentration was 

"4* 2"̂  
determined iodometrically and the [H ] in Cu solutions was deter­

mined directly using standard base and bromphenol blue indicator. 

All other routine analyses were described in the first section. 

Kinetics 
2+ 3+ 

The Cu or Fe reactions with the a-hydroxyalkylchromium(III) 

complexes were followed spectrophotometrically at a convenient wave­

length, usually near 400 nm. The experiments were carried out under 
2+ 

an atmosphere of Or -scrubbed nitrogen. Standard syringe techniques 

were used for transferring solutions anaerobically. 
2+ 3+ 

Kinetic data were obtained with Cu or Fe in at least a 

twenty-fold excess. Under these conditions, pseudo-first-order plots 

of In (D^-D^) versus time were typically linear for three half-lives. 

For most stopped-flow experiments, the data were automatically 

digitized and transferred to a PDP-15 computer for a least-squares 

treatment. Kinetic data for each complex were collected at 1.00 M 

ionic strength using LiClO^. Rate constants were evaluated as a 

function of [Cu^*] or [Fe^^j at several acidities. 
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RESULTS 

The kinetic data, which were collected as pseudo-first-order rate 

constants, were manipulated in the following manner. Data were 

collected at three or more acid concentrations for a given complex. 
2+ 3+ 

At a particular acid concentration, the excess reagent, Cu or Fe , 

was also varied over a range limited by ionic strength. Plots of 

•^obs versus [oxidant] at a given [H"*"] were linear, and the slopes of 

these plots yielded second-order rate constants. Plots of second-order 

rate constants versus 1/[H*] were also linear. The following general 

rate law is thus obeyed: 

-d[CrC(RV)QH^"^] = ) [CrC(R^R^)OH^'^][OxJ (1-34) 
dt 0 [H+] 

This is the same rate law which was previously found for the less 

substituted a-hydroxyalkylchromium(III) complexes (42). All of the 

data were routinely treated by least-squares analysis. The values of 

k and k' were determined from the plots of second-order rate constants 

versus 1/[H*]. Invariably, the acid-dependent pathway was found to be 

dominant. The kinetic data for each complex are summarized in Tables 

1-24 through 1-31. A final summary of the values of k^ and k' for each 

complex is presented in Table 1-32. 
2+ 

The slowest reacting species was CrCHOCgHgjOH , which was also 
2+ 

the only complex prepared from a primary alcohol. Both the Cu and 
3 +  

Fe rate constants for this complex were in the rangé of what was 

previously found for other members of this series (see Table 1-32). 

The remaining complexes studied show a steady increase in the 
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Table 1-24. Kinetic data for the 
2+ 

reaction of Cu with CrCH(C2H5)0H^"^^ 

[H+]/M [Cu2+]/M 
1 lb 

0.10 M 0.10 1,210±0.013(5) 

0.05 0.643±0.003(5) 11.9±0.4 
0.04 0.511±0.003(5) 

0.02 0.245±0.004(5) 

0.20 M 0.10 0.691±0.005(5) 

0.05 0.349+0.006(5) 
6.7±0.2 0.04 0.299±0.006(5) 6.7±0.2 

0.02 0.148±0.002(5) 

0.40 M 0.10 0.421+0.002(5) 

0.075 0.336±0.003(6) 3.96±0.3 

0.05 0.223±0.003(5) 

^Experiments at 1.00 M ionic strength (LiClO^); [Cr^*]^ = 

~1 x 10"3 m. 

'^Second-order rate constants calculated from the slope of 
2+ 

l^obs versus [Cu ]. Values in parentheses represent the number of 

replicate determinations. 
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Table 1-25. Kinetic data 
3+ 

for the reaction of Fe 
2+a 

with CrCH(C2Hg)0H^ 

[Fe3+]/M 
w"' kpg3+/M"^s""' 

0.50 0.018 0.232±0.003(3) 

0.028 0.294±0.01(3) 

0.038 0.385+0.02(4) 

0.048 0.458+0.01(4) 9.3±0.7 

0.10 0.018 O.llOiO.005(4) 

0.028 0.161±0.002(6) 

0.038 0.222±0.003(4) 

0.048 0.254±0.001(4) 

0.058 0.337±0.017(4) 5.5±0.2 

0.20 0.018 0.067±0.002(6) 

0.028 0.0938±0.0015(4) 

0.048 0.148±0.003(6) 2.96+0.15 

^At 25.0°C and 1.0 M ionic strength; all values in 1 M 
2-propanol. 

^Values in parentheses represent the number of replicate 
determinations. 
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Table 1-26. Kinetic data for the 
2+ 

reaction of Cu with 

CrC(CH3)(C2Hg)0H2+^ ' 

[Cu2+]/M k/M-Ts-T 

0.090 0.10 2.58±0.04(7) 

0.080 2.33±0.03(8) 

0.040 1.68±0.04(8) 

0.020 1.33±0.05(8) 15.9 

0.10 0.10 2.36±0.06(11) 

0.080 2.16±0.03(8) 

0.040 1.54±0.04(7) 

0.020 1.20±0.02(8) 14.9 

0.12 0.10 2.09+0.03(7) 

0.080 1.96±0.02(7) 

0.040 1.42±0.01(7) 

0.20 1.18+0.02(6) 11.9 

0.15 0.10 2.02+0.04(16) 

0.080 1.83±0.02(14) 

0.40 1.46+0.02(14) 

0.020 1.24±0.01 (8) 9.8 

0.30 0.10 1.32+0.02(10) 

0.089 1.27±0.03(11) 

0.075 1.22±0.01(5) 

0.040 1.06±0.01(8) 

0.020 0.98±0.01(8) 4.3 

0.50 0.080 1.29 ±0.05(11) 

0.050 1.21±0.03(6) 

0.020 1.09±0.03(7) 3.25 

®At 25.0°C and 1.0 M ionic strength; all values in 1 M 2-butanol. 

'^Values in parentheses represent the number of replicate 
determinations. 
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Table 1-27. Kinetic data for the reaction of with 

CrC(CH3)(C2Hg)0HZ+^ 

[h"^]/M 10^ [Fe^+J/M kpg3+/M-ls-l 

0.10 M 6.9 10.03±0.07(6) 

4.9 7.27+0.04(7) 

2.4 4.08±0.03(7) 132±3 

0.20 M 5.9 5.01±0.14(8) 

3.9 3.67±0.01(7) 

2.4 2.66±0.03(7) 67±0.1 

0.30 M 4.4 3.09±0.01(7) 

2.9 2.43+0.02(8) 

1.4 1.75±0.01(7) 44.7±0.4 

^At 25.0°C and 1.0 M ionic strength; all values in 1 M 2-butanol. 

'^Values in parentheses represent the number of replicate 
determinations. 
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?+ • . ?+a 
Table 1-28. Kinetic data for the reaction of Cu with CrCCCgHgjgOH 

10^ [CuZ+]/M kcu2+/M-1s-' 

0.115 3.9 9.58+0.1(6) 

7.4 10.64±0.06(8) 

14.9 12.90±0.3(7) 30.17±0.04 

0.15 3.9 9.63±0.05(5) 

7.4 10.35±0.12(7) 

14.3 11.94±0.15(5) 22.3±0.6 

0.30 2.4 8.90+0.05(8) 

5.9 9.37+0.09(7) 

9.9 9.71±0,08(7) 10.80+1.4 

®At 25.0°C and 1.0 M ionic strength; solvent was saturated with 
3-pentanol ('^0.05-0.1 M). 

'^Values in parentheses represent the number of replicate 
determinations. 
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Table 1-29. Kinetic data for the 
3+ 

reaction of Fe with CrCCC2H5)20H^"^® 

[H+]/M [Fe3+]/M kpg3+/M"''s"'' 

0.125 0.073 33.4±0.7(7) 

0.073 31.5+0.5(5) 

0.048 24.6+0.3(5) 

0.038 21.9+0.3(5) 

0.023 17.1±0.2(4) 306±18 

0.20 0.063 21.8±0.5(8) 

0.038 17.2±0.2(6) 

0.023 13.8+0.2(7) 198±11 

0.30 0.048 16.4±0.3(6) 

0.038 14.1±0.2(7) 

0.023 12.1+0.3(5) 169±26 

^At 25.0°C and 1.0 M ionic strength; solvent was saturated with 
3-pentanol (~0.05-1.0 M). 

^Values in parentheses represent the number of replicate 
determinations. 
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Table 1-30. Kinetic data for the 
?+ 

reaction of Cu with 

CrCfCHgjfi-CgHyiOHZ+G 

1—
1 [Cu2+]/M kc„a/M-is-i 

0.05 0.158 57.0±2.0{12) 

0.08 38.6±0.4(7) 

0.04 28.9±0.3(6) 

0.02 24.2±0.1(7) 240.9±0.6 

0.10 0.149 39.3±0.8(6) 

0.074 30.1±0.3(7) 

0.029 24.3±0.3(7) 

0.019 22.2±0.1(7) 126.3±1.9 

0.25 0.099 26.3+0.4(8) 

0.059 24.33±0.07(6) 

0.024 22.2+0.1(7) 58.6±0.7 

0.30 0.079 24.92+0.09(6) 

0.039 23.06±0.10(8) 

0.019 21.74±0.06(7) 52.1±6.2 

®At 25.0°C and 1.0 M ionic strength; solvent was saturated with 
3-methyl-2-butanol. 

^Values in parentheses represent the number of replicate 
determinations. 
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Table 1-31. Kinetic data for the reaction of Fe^* with 

CrC(CH2)(i-C2Hy)0H2+^ 

[Fe3+]/M "^obs^^'^ kpg3+/M-"'s"'' 

0.10 0.039 102.1±1.5(8) 

0.019 62.6±1.0(8) 

0.014 51.2±0.5(7) 2018.6 

0.20 0.05 70.8±0.7(6) 

0.04 61.5±0.7(3) 

0.02 42.3±0.8{4) 951.4 

0.40 0.035 38.5±0.5C7) 

0.0215 32.5±0.3(7) 

0.014 28.7±0.21(7) 464.0 

®At 25.0°C and 1.0 M ionic strength; solvent was saturated with 
3-methyl-2-butanol. 

'^Values in parentheses represent the number of replicate 
determinations. 
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Table 1-32. Parameters for the dependence of oxidation rate constants 
on [H+] 

Complex 

k'/H^ 

kpe/M""* s-"* 

k'/H^ 

CrCHgOH 
2+a 

2+a 

2+a 
CrCHtCHgjOH 

CrClCHgjgOH 

CrCHlCFgJOH 

CrCHfCHgjOCgH 

2+a 

2+a 

CrCHgOCHg 2+a 

0.036(7)+0.25113)/[H] 

0.68(12)+ 1.46(5)/[H+] 

0.77(4)+ 0.574(13)/[H+] 

2 x lgr4/[h+] 

n.r. 

n.r. 

2+* 
CrC(.CH3)20CH(CH3)2^ n.r. 

CrCH(C2Hs)0H2+^ 1.36(9 j + 1.06(1 )/[H+] 

CrClCH2)(C2Hs)0H2+^ 0.0(4)+ 1.46(10)/[H+] 

0.0(7) +3.3(1 )/[H+] 2+*t 
CrC(C2Hg)20H 

CrClCH2)(i-C2Hy)0H2+*13.5(7)+11.36(6)/[H"] 

0.22(1 ) + 0.496(6)/[H ] 

0.71 (2) +0.481 (5)/[H+] 

3.79(34)+1.90(8)/[H+] 

0 + 0.127(1)/[H+] 

0.082(7)+ 0.040(21 )/[H+] 

0.0062(18)+ 0.0127(5)/[H+] 

n.r. 

l.l(5)+0.42(3)/[H+] 

1.4(6) +13.07(6)/[H+] 

60(28) + 30(5)/[H+] 

0.0(12) + 193(8)/[H+] 

At 24.8°C and 1.0 M ionic strength; References 16 and 42. 

^This work, at 25.0 ± 0.1 °C-, 1.0 M ionic strength and 1.0 M 
alcohol, complexes denoted by (*) were in aqueous solutions saturated 
with alcohol or ether. Values in parentheses represent the uncertainty 
(standard deviations) in the last significant digit. 
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3+ 
acid-dependent term, especially the Fe reactions, which parallel the 

increase in substitution at the a-carbon. Thus, the acid-dependent 

term increases almost 500 fold going from CrCHfCgH^jOH^^ to 

CrC(CH3)(i-C3Hy)0H2+. The experiments with CrC(CH3)20CH(CH3)2^'^ 
2+ 3+ 

showed no direct reaction with either Cu or Fe . The homolysis 
2+ 3+ 

reaction observed upon reaction with Cu or Fe has been dealt with 

in the first section. This is similar to the type of reactivity found 

for other ether-derived complexes (Table 1-32). 

Some representative plots of versus [oxidant] are shown 

(Figures 1-25 and 1-26) for reactions of Fe^* with CrC(CH2)(C2Hg)0H^^ 

and CrC(CH2)(i-C2Hy)0H^^. Similar plots were made from the other 
2+ 

complexes and for reactions with Cu . The linear dependence of the 

second order rate constants with is also shown for the same two 
3+ 

complexes reacting with Fe (Figures 1-27 and 1-28). The intercepts 

of the plots of versus [oxidant] approximate the first order 

homolysis rate constants (see Homolysis, in the previous section). 

Since the values of the homolysis rate constants are characteristic of 

a particular complex, these intercepts further substantiate that the 

reactions which were followed were those of the a-hydroxalkylchromium-

(III) species and not of some other species. 



www.manaraa.com

in  

10 

9 0.10M H 

8 

7 

6 

5 0.20MH 

4 

3 0.30 M H 

2 

0 
0 

l02[Fe3+]/lvl 

Figure 1-25. 
3+ 

Plot of versus [Fe ] for reactions with 

CrC(CH3KC2H5)OH^"^ at 0.10, 0.20, and 0.30 M HCIO^; 

at 25.0°C and y = 1.00 M (LiClO^) 
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Figure 1-26. Plot of versus [Fe^^] for reactions with 

CrClCH2j(i.C3HyJ0H2+ at 0.10, 0.20, and 0.40 M 

HCIO^; at 25.0°C and y = 1.00 M (LiClO^) 
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Figure 1-27. Plot of kpg3+ versus for reactions of Fe^^ 

with CrC(CH3)lC2H5J0H2+ at 25.0°C and y = 1.00 M 

(LiClO^) 
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Figure 1-28. Plot of kpg3+ versus for reactions of Fe^"*" 

with CrClCH2)(i-C2HyjOH2+ at 25.0°C and y = 1.00 M 

(LiClO^; 
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DISCUSSION 

3+ 2+ 
Earlier work with the Fe and Cu oxidation of a-hydro>^-

uC] aC| 

alkylchromium(III) complexes has clearly established the stoichiometry, 

products and general course of the reaction. With the added kinetic 

information gained from this study, an attempt will be made to present 

mechanisms for these oxidation reactions. Because of the transient 

nature of the species studied here, an assumption has been made that 

the products formed are analogous to those found in earlier studies. 

The mechanisms proposed here are an attempt to explain the facts 

presently known for Cu^^,^ and Fe^^^„ oxidations of CrC(R^R^)OH^^ 
aq ac] 

complexes. The two most probable mechanisms are presented along with 
2+ 3+ 

some alternative schemes. The possibility that Cu and Fe react by 

different pathways is also explored. However, like any proposed 

mechanism, these cannot be proven to be correct and are open to future 

revision when and if new findings are made. 

One of the more striking mechanistic clues available in this study 

is the predominant pathway which is dependent on . This pathway 

requires ionization of a proton from one of the reactive species in 

forming the transition state. Unfortunately, there are several sites 

on the reactive species from which a proton may ionize. The most 

logical possibilities would seem to be: (1) a water molecule coordi-
2+ 3+ 

nated to Cu or Fe (2) a water molecule coordinated to the 
aq aCj 

organochromium species, or (3) the proton on the -OH group of the 

a-hydro)^alkyl ligand. 
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3+ 
The first possibility would seem quite reasonable for Fe which 

2+ 
has a pKg of 2.78 under the conditions used here (98), For Cu , which 

has a pK ionization of a proton would be much less favorable. 

Also, the value of is part of the rate expression if a water 
2+ 

molecule on Cu is ionized, placing constraints on the values of 

other rate constants which seem to be unreasonable. Ionization of a 

proton from a water molecule coordinated to the Cr^^^ center would also 

be a possibility, and will also be considered in discussing the 

possible mechanisms. Finally, an additional site for proton ionization 

exists in these complexes and that is the -OH group of the a-hydroxy-

alkylchromium(III) complexes. The pK^ values for some a-hydroxyalkyl 

radicals are known to be ^10-14 (Ref. 12, p. 211). The ligation to a 

Cr^^^ center would be expected to lower the pK^ for these groups 

markedly (Ref. 75, pp. 316-319). Therefore, the -OH group must also 

be considered as a possible site for the proton ionization. 

As we have just seen, there are several sites which all seem to 

be possible sites of the proton ionization which would account for the 

term in the rate expression. The ambiguity associated with the 

site of proton ionization is the main stumbling block to establishing 
2+ 3+ 

the reaction mechanisms for the Cu and Fe reactions. The vexing 

problem of several sites which may account for a term in the 

rate expression has been recognized by many investigators (Ref. 75, 

pp. 69-71, and references cited). 

Let us explore the third possibility first. If the site of 

proton ionization were the hydro)<yl group of the hydroxyalkyl ligand, 
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then presumably the metal ion oxidants (Cu^^, Fe^^) may bind at this 

site. A possible scheme for this pathway is shown below for the case 
2+ 

with Cu as the oxidant. The rate law for this scheme, using the 

Scheme 1-8 

Cu^+gq + (H20)gCrC(RTR2)0H2+ [(H20)5CrC(R^R^)0Cu^'^] + H"^ (1-35) 

k 
[ ( H 2 0 ) g C r C ( R T R 2 ) 0 C u 3 + ]  — C r ^ " ^  +  C u + ^ q  +  ( R ^ R ^ ) C = 0  ( 1 - 3 6 J  

steady-state approximation for the intermediate, is 

-drCrC(R^R^)OH^''"] _ k^k2[CrC(R^R^)QH^ 3[Cu^ ] 

~ k_i[H+] + kg 
(1-37) 

If k_^[H^]» kg, then this rate law has the same form as the apparent 

rate constant obtained from experimentation. This mechanism seems 
2+ 

quite reasonable for Cu which has very labile waters and fast 
— R 

substitution rates which are nearly diffusion-controlled (tj^ ^10" sec 

(99)). This mechanism is the same one proposed earlier by Bakac and 

Espenson (16,42). It should be noted that there are other mechanisms 
2+ 

which also seem plausible for the Cu reactions. Briefly, one could 

envision reaction of Cu^^^g with a H0Cr(H20)^C(R^R^j0H^^ species, in 

which the transition state could resemble that shown below. The rate 

law would have the same form as the kinetic data and must be considered 

a possible pathway. The mechanism shown in Scheme 1-8 is tentatively 

2+ 
favored for the Cu reactions on the grounds that the range of rate 
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HO 
Cu 

,R 1  
3+  

I 3// 
H5O ~ C r — C —OH 

\,2 

constants is rather narrow. In addition, the a-a1koxyalkyl complexes 
2+ 

do not react at all with Cu . These are just what this mechanism 

would predict. These are admittedly not conclusive arguments for that 

assignment, however, and proton ionization from another site cannot be 

ruled out. 
3+ 

On the other hand, Scheme 1-8 can be ruled out for the Fe 

reaction because of the slow substitution rates of water molecules 
3+ 

coordinated to Fe . This can be shown by rearranging Equation 1-37 

to the form (with Fe^* substituted for Cuf*): 

'obs 

kikgEFe^+J 

k-j [H*] + kg 

In order to agree with the experimental kinetic data k ^[H ] must be 

k_i[H"] 
» kg or — »1. Using values from Table 1-31 for the reaction of 

with CrC(CH3)(i-C3Hy)0H^'^; = '02 s"^ and = 0.039 M, 

the assumption that —r >> 1 may be tested. If this assumption is 
Kg 

not valid, then the form of the rate law does not fit the experimental 

data and the mechanism may be discarded. Using a value of 90 s~^ 
3+ 

for k-j (Ref. 100, p. 59), which is the value for the reaction of Fe 
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and SCN", we may test the assumption. 

k_i + [Fe3+]k, 
1 [H ] = —r 1 = 0.034 

"^2 "obs 

Clearly, 0.034 is not much greater than one! Furthermore, we may also 
3+ 

calculate that for the example used; for Fe substitution would 

have to be ~6 x 10^ s~^ to fit the observed kinetic data, this 
3+ 

is far outside of the range of the fastest Fe substitution rate 
3+ 

constants. Even if substitution on Fe was fast enough in this case, 

the kinetic data indicate that bulky alkyl groups on the a-carbon show 

no rate-retardation whatever. In fact, the trend observed for values 

of k' indicate that the rate constant increases with increasing 

bulkiness at the a-carbon. The insensitivity of k' to the steric bulk 

around the -OH group can be exemplified by considering the following 

three complexes: CrCHfCgHgjOH^*, CrCtCH^pfCgHgjOH^* and 
?+ 

CrCfCHgjfi-CgHyjOH . The apparent rate constants for the inverse acid 

pathway are 0.42, 13.07 and 193 s~\ respectively. Indeed, the trend 

observed is in the opposite direction of what one would expect based 

upon steric considerations, but seemingly k' is quite responsive to 

substitution at the a-carbon. 
3+ 

To explain the Fe mechanism, consider the first site proposed 

as a possible site for proton ionization, the metal ion itself. This 
2+ 

implies that FeOH would be the reactive species. A possible 

mechanism based upon this site for proton ionization is shown in 

Scheme 1-9. 
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Scheme 1-9 

1^ 
(H20)Cr(H20)4C(R^R^)0H^'*' Cr(H20)4C(R^R^)0H^'^ + H^O (1-38) 

-38 

k 
FefHgOlgS* + CrfHgOiqCfRTRZjOHZ* + [(HgOjgFetOHjCrfHgOjg-

C(R^R^)OH^^] (1-39) 

k 
[(H20)gFe(OH)Cr(H20)4C(RTR2)OH4+] —FeOH+ + Cr^* 

+ (R^R^)C=0 + (1-40) 

Making the steady-state approximation for the concentration of the 

bimetallic intermediate, the rate law has the form shown: 

-d[CrC(R^R^)OH^"^]_ '^38'^39'^et*-''^^ ][CrC(R^R^)OH^ ] 

k_2gkg^ 

If k_2g[H^]>>kg^, then the limiting form of the rate law is: 

-drCrCIR^R^lOH^^I k38k39ket[Fe^*][CrC(R^K^'0'f*] ,, 

dt k u ru+l ^ ' 
-38 -39'- J 

which is the same as the form found for the predominant inverse acid-

dependent pathway. (In this case, k' would be equal to (kggkggkg^/ 

k-38k_3g, as can be seen in Equation 1-42.) 

The most critical step in this mechanism is the substitution into 

the inner sphere of the Cr^^^ complex. Although most Cr^^^ complexes 

are considered to be substitution inert, alkyl groups are known to 

labilize the water coordinated trans to the alkyl group (101). Recent 
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evidence has shown that CrCHgOCH^^* and CrCHgOH^^ (48) are much more 

labile than CrCHgCl^ and CrCHCl^^ for which ligand substitution rates 

are known (101). If the substitution on the complexes studied here 

are even faster, this would help explain the trend in rate constants 

observed. 

In order to get an idea of the magnitude of the substitution 

rates on various Cr^^^ complexes, the half-times for the following 

complexes are compared at 25° and 0.1 M NCS~: Cr^*, CrCHCl^^^, 

CrCHgCl^^, CrCHgOCHg^* and CrCHgOH^^. The calculated half-times for 

the anation reaction with NCS~ are: 9.3 x 10® s, 128 s, 42 s, 
n ^ p 

9.9 X 10" s, and 1.3 x 10" s, respectively. These values show the 

tremendous labilizing effect the alkyl groups have on substitution 

reactions of Cr^^^. They also show that within the series of alkyl-

chromium complexes for which substitution rates are known, there is a 

large variation depending upon the nature of the alkyl group. For the 

series of a-hydroxyalkylchromium(III) complexes, it seems reasonable 

that substitution of groups on the a-carbon which are electron-

donating should inductively "push" more electron-density to the Cr^^^ 

center, thus increasing the lability of the trans water. If this 

premise is true, one would expect complexes such as (H20)gCrC(CH2)-

(C2Hg)0H^*, CrCfCgHgjgOH^*, and the other highly substituted analogs 
2+ 

studied would be even more substitution labile than CrCHgOH . This 

increased lability would presumably manifest itself in the form of 
3+ 

higher apparent rate constants for the Fe reactions (since the 
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value of kggkgg/kgg would be expected to be higher) which is exactly 

the trend observed. 

This mechanism is similar in many ways to the mechanism proposed 
?+ '?+ 

for reaction of Cr with Fe which also has a predominant pathway 
3+ 

which is inverse acid dependent (102,103). The k' value for the Fe 
2+ 

reaction with Cr is larger than the k' values found in this study, 

3 -1 
which certainly seems reasonable. (Compare 7.3 x 10 sec" for k' at 

25° for the Fe^^ + Cr^* reaction (103) with 1.9 x 10^ sec"^ for 

CrC(CH2)(i-C2Hy)0H^^, the largest value of k' measured here.) If 

this analogy is valid, one may argue that the increasingly more 

powerful reducing radicals, such as «CfCHgjfCgHgjOH and «C^CgHgjgOH, 

cause the chromium center to be more electron rich, such that it 
2+ 3+ 

approaches the level of reactivity of Cr with Fe . 
3+ 

One may also note that Fe does not appear to react with 

CrC(CH2)20CH(CH2)2^^ at all and only slightly with the other two 

ether-derived complexes (Table 1-32). (Copper(II) does not react 

directly with any of the ether complexes.) Two very different 

interpretations of the meaning of this result are possible. The alkyl 
2+ 

group bound to the oxygen atom may be a blocking group (Cu 

mechanism), or it may simply serve as a site which renders the two 

electron oxidation of the alkyl ligand much less thermodynamically 

accessible (104). The latter interpretation would be applicable to the 

Fe^^an mechanism. aq 

In summary, different mechanisms are required to explain the 

reactions of Cu^^,„ and Fe^^,„ with a-hydroxyalkylchromium(III) aq aq 
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complexes. One must conclude that for those complexes which have 
2+ 3+ 

similar apparent rate constants for Cu and Fe (the first few aq 

entries in Table 1-32) that the similarity is simply due to a 

cancelling effect of a number of parameters such as pK^, substitution 

rate and redox potential. Finally, with the more highly substituted 
O I pi 

complexes, the stronger driving force of Fe over Cu (more powerful 

oxidizing strength) seems to begin to dominate the k' values. One may 

conclude that as the chromium center becomes more strongly reducing, 

due to increased electron density from the alkyl ligand, the 
?+ ?4-

differences in reactivity toward Cu and Fe become more distinct. 
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PART II. BINUCLEAR COBALT COMPLEXES OF SCHIFF BASE MACROCYCLIC LIGANDS 
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INTRODUCTION 

The study of bimetallic complexes has grown extensively in recent 

years and has been the subject of several review articles (105-106). 

There are three major areas of interest in the study of binuclear 

complexes. First, there is a question whether the metal ions interact 

in such a way to exhibit chemical reactivity which is different from 

mononuclear analogs. This type of interaction is known for metallo-

enzymes such as nitrogenase which has coupled metal centers and is able 

to reduce nitrogen under mild conditions. Second, it is important to 

investigate these complexes to see if interactions between the metal 

centers change the electronic properties of the metals such that they 

behave differently than the mononuclear analogs (107). Third, these 

complexes are interesting examples for the study of magnetic exchange 

interactions (108). 

This thesis is concerned with the preparation and characterization 

of dicobalt complexes of binucleating Schiff base ligands. The com­

plexes may be viewed as two cobalt atoms held a fixed distance apart in 

space by a rigid coplanar macrocyclic ligand containing an extended tt 

bonding system. The coplanarity of the ligand system is expected to be 

maintained so that the ir-bonding may be delocalized (109-111). The 

structures of the complexes are shown in Figure II-l. Space-filling 

models indicate that the cobalt centers are ~8X apart. In this study, 

the group in the fifth position of the sal icy1 aldehyde ring was varied 

(Complexes I-III) to study the effect of substitution on the properties 
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Figure II-l. Structures of cobalt complexes 
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of the complexes. One organometallic derivative was also prepared 

(Complex IV) and its reactivity was examined. 

The fifth complex, mononuclear CofsalgPhen) was used as a guide to 

the possible reactivity of the binuclear complexes since it has a 

similar ligand system and coordination environment. With regard to the 

coordination number, V forms five coordinate species quite readily when 

it is coordinated to a strong axial ligand. The spin state of V has 

also been determined to be low spin, thus with a very similar ligand 

field environment, one might consider the binuclear complexes to also 

be low spin. 

Another feature of mononuclear complex V is its ability to form 

1:1 oxygen adducts in aprotic solvents. These adducts are formed 

reversibly in aprotic solvents, but in protogenic solvents the action 

of air on the Co^^ complex causes oxidation to the Co^^^ complex (112). 

The implication of these findings on the conclusions made in the stucjy 

at hand will be dealt with in more detail in a following section. 

Most extensive studies based on binuclear complexes of this type 

have focused on the solid complexes (108,113). Undoubtedly, this has 

been due. In part, to the slight solubility of the complexes in 

solution. The approach usually has been to probe the magnetic coupling 

interactions of the two metals (usually Cu) held by the chelate. Some 

of these magnetic studies have Indicated that the 1,2,4,5-tetraamlno-

benzene unit can be effective In promoting metal-metal Interactions 

(113,114). These magnetic studies are. of course, Indicative of solid 

state Interactions, but the effect of solvolysis would not be expected 
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to greatly disrupt the intramolecular interactions in these binuclear 

complexes. EPR studies have shown that the metal-metal interaction is 

an intramolecular one and not intermolecular (113). The 1,2,4,5-tetra-

aminobenzene bridging moiety provides a pathway for a superexchange 

mechanism and this could thereby provide metal-metal interaction. 

In terms of redox chemistry, this exchange mechanism could manifest 

itself in several ways. For a Co^^^-Co^^^ to Co^^^-Co^^ process, the 

possibility of nonadiabatic electron transfer exists due to the large 

spin change required (115). One might also hope to detect the mixed-

valence state by the production of a near IR absorption band (116). 

These complexes hold a certain promise for the possibility of 

expanding our understanding of the factors governing the reactivity of 

metal complexes. By varying the nature of the binucleating ligands, 

one might hope to systematically probe steric effects, electronic 

effects and other parameters relevant to the reactivity of metal com­

plexes. Some of the factors which might be varied in a series of com­

plexes are the metal-to-metal distance, the degree of conjugation in 

the binucleating ligand itself, and substituents on the ligand. In 

this way, the extent to which one parameter dominates over another 

could be examined by varying them one at a time. The possibilities 

seem almost limitless; for instance, for a given ligand system, one 

might choose to see the effect of electron-donating groups versus 

electron-withdrawing groups located at the periphery of the ligand. 

Thus, despite the known difficulties associated with such bulky ligands 

and complexes, the rewards possible seem to justify their preparation. 
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EXPERIMENTAL 

Materials 

Substituted salicylaldéhydes 

5-tert-Butylsal icylaldehyde Anhydrous glycerol (160 g; 1.63 

mol) and boric acid (35 g; 0.566 mol) were placed in a 1 L, 3-neck 

round bottom flask for the preparation of anhydrous glyceroboric acid 

(117). The viscous solution was heated to 170°C and kept at that 

temperature for at least 1 hour. The solution was then cooled to 160°C 

and 25 g each of p-tert-butylphenol and hexamethylenetetramine were 

added rapidly in alternating portions. The reaction was very exo­

thermic and the flask had to be externally cooled very soon after the 

reaction began or the temperature would rise above 190°C. The solu­

t i o n  w a s  s t i r r e d  f o r  ~ 5 - 7  m i n . ,  b u t  n o t  a n y  l o n g e r ,  A f t e r  t h e  5 - 7  

min. reaction time, the flask was cooled to 100-110°C and '\4 M HgSO^ 

(100 mL) was added. The viscous, dark brown solution was then 

subjected to a steam distillation and 1-2 L of distillate was 

collected. The distillate was extracted with ether and the ether layer 

was allowed to stand overnight over anhydrous CaClg. Finally, the 

ether layer was filtered to remove the CaClg and evaporated leaving 

a yellow oil. The yellow oil was vacuum distilled with the desired 

product obtained water free at 57-58.5°C/0.1 mm Hg. nmr 6 1.35 

(9H), 6.9-7.1 m (IH), 7.5-7.7 m (2H), 9.9 s (IH), 10.955 (IH). 
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Sodium salicy1aldehyde-5-sulfonate Sulfuric acid (95%, 250 ml) 

was slowly added to a 500 mL round bottom flask containing salicyl-

aldehyde (Aldrich 98%, 29 g). The temperature was kept at 40° or lower 

to prevent oxidation of the aldehyde. The reaction mixture was stirred 

for 18-24 hrs at 35° and then cooled in an ice bath prior to being 

poured very slowly over 500 g of distilled water ice. The solution 

was diluted with water (500 mL), sodium carbonate (250 g) was added to 

neutralize the acid, and the volume was reduced by about one-half on a 

rotary evaporator at 40°. The gray precipitate of sodium 

salicylaldehyde-5-sulfonate one-sixth hydrate was recrystallized from 

hot water and dried at 100° in vacuo, The isolated yield of feathery 

white needles was 14.5 g (27%). The solid was found to be hygro­

scopic and was protected from moisture. A smaller scale experiment 

with 5 g of salicylaldehyde gave a yield of 45%, mp. > 304°; v' 

KBr 3530, 3440, 2900, 1660, 1180, 1035; NMR (DgO):^ 6 9.98 (s, 

aldehydic), 8.12 (d, J = 2.3 Hz), 7.94 (q, J = 8.7, 2.3 Hz), 7.08 (d, 

1.0 H, J = 8.7 Hz); NMR (DgO):^ 6 198.5, 163.2, 136.3, 135.4, 

131.8, 121.3, 118.9. Anal. Calcd for C^HgOgSNa • 1 HgO: C, 37.01; 

H, 2.37. Found: C, 37.00; H, 2.20. 

^Proton chemical shifts are relative to Tiers' salt (sodium-2,2-
dimethyl-2-silapentane-5-sulfonate). 

2 13 
The C chemical shifts were measured in DgO relative to 

p-dioxane and calculated relative to TMS by adding a constant of 

66.99 ppm. 
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The phenylhydrazone was prepared by addition of phenyl hydrazine 

hydrochloride (1.0 g; 6.9 mmol) to an aqueous solution of 5-sulfo-

salicylaldehyde sodium salt (0.5 g; 2.2 rnmol). The solution was 

warmed to 60-70° and stirred for ^2 hrs. The golden-yellow precipi­

tate was filtered and washed with ethanol and ether and was recrystal-

lized from hot water in which it was only slightly soluble. The solid 

was dried in vacuo at 100°. The product was found to be the phenyl-

hydrazinium salt of the phenylhydrazone derivative as described by 

Blau (118). Anal. Calcd for C^gHgoN^O^S: C, 56.99; H, 5.03; N, 13.99. 

Found: C, 56.70; H, 5.09; N, 14.00. 

Liqands 

1,2,4,5-Tetrasalicylalideneaminobenzene [(salH)^bz] To a 

stirred suspension of 1,2,4,5-tetraminobenzene tetrahydrochloride 

(0.95 g; 3.3 mmol) in ~100 ml of dry methanol under dry nitrogen, a 

solution of sodium methoxide was added until the benzenetetramine was 

completely dehydrohalogenated. This process was followed by a series 

of striking color changes, a final yellow color marking the endpoint. 

Salicylaldehyde (1.61 g; 13.2 mmol) was slowly added dropwise into the 

warmed solution of the benzenetetramine with an immediate color change 

being noted toward a darker orange-brown. Orange solids precipitated 

out of the solution within M hour and the solution was cooled. The 

precipitate was filtered and washed several times with methanol and 

ether and air dried. (Yield: 90%, mp 270-290° decomp.) Due to the 

low solubility of the ligand, a small portion was recrystallized from 



www.manaraa.com

132 

CHClg and used for microanalysis. Anal. Calcd for 

{I.5CHCI3): C, 55.66; H, 3.57; N, 7.64. Found: C, 56.18; H, 3.69; 

N, 8.08. 

1,2,4,5-Tetra(5-tert-buty1 sali cylali deneami no)benzene 

(5-Bu^salH)^bz Freshly prepared sodium methoxide was added to a 

suspension of 1,2,4,5-tetraaminobenzenetetrahydrochloride (1.73 g; 

6.1 mmoles) until the cloudy-gray suspension went through a series of 

color changes including a brilliant pink to a bright green and finally 

a pale yellow. This dehydrohalogenation step was carried out in a 

250 mL round bottom flask containing dry methanol (100 mL) which was 

under a constant stream of dry nitrogen. The tetraamine thus produced 

in situ was reacted as quickly as possible because it has been found to 

be somewhat unstable (perhaps simply air-sensitive). The substituted 

aldehyde^ (5-Bu^salicylaldehyde) (4.47 g; mmol) was added dropwise 

with constant stirring to the benzenetetramine solution. As the drops 

of the 5-tert-butylsalicylaldehyde were added, the solution turned a 

rich oxblood color. The solution was refluxed for ^^24 hr during which 

time an orange precipitate fell out of the solution. After filtration, 

the ligand was recrystallized from boiling CHClg. (Yield: 40-75%.) 

Mass spectrum m/e 779 ±1. NMR (CDCl^): 6 1.3 s, 6.9-7.6 m, 8.8 s. 

The corresponding sulfonated ligand prepared from 5-sulfosalicyl-
aldehyde and 1,2,4,5-tetraaminobenzene was not isolated as a solid, 
but prepared in situ and reacted immediately with the cobalt(II) 
solution. Therefore, its preparation is fully described in the metal 
complex section. 
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12.6 s (no integration due to low S/N). Anal. Calcd for 

C, 77.09; H, 7.50; N, 7.19. Found: C, 76.23; H, 7.56; N, 7.62. 

Cobalt complexes 

prepared from the same central moiety, 1,2,4,5-tetraaminobenzene. The 

1,2,4,5-tetraaminobenzene tetrahydrochloride was purchased (Aldrich 

98%) and used without further purification. Commercial sodium 

methoxide was not found to be satisfactory for the dehydrohalogenation 

of 1,2,4,5-tetraaminobenzene so it was freshly prepared from cut sodium 

metal in methanol immediately prior to its use (119). The Duff reaction 

was used to prepare 5-tert-butylsalicylaldehyde (117). A new, direct 

synthesis of 5-sulfosalicylaldehyde from sulfuric acid and salicyl-

aldehyde was used to prepare the water soluble sodium salt of 

5-sulfosalicylaldehyde (120). In all cases, reagent grade solvents 

were used without further purification except for drying over 4A 

molecular sieves, unless otherwise specified. The general synthetic 

route can be represented as: 

General synthetic route All of the binucleating ligands were 

4 NaOMe 
-> 

+ 

+ 4 NaCl + 4 MeOH 
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hgn 

o 

fi ? 
oh ho 

(r=h, (chgjgc-, so3) 

+ 4h2o 

hg(5-rsalqbz) 
2 Co(0Ac)p-4 HpO TT 

^ ^ -> C02 (S-Rsal^bz) + 4 HOAc + 8 H^O 
Ng atmosphere 

In the preparation of the cobalt complexes, it was found that it 

was not necessary to rigorously exclude air during their filtration. 

Ultimately, the 5°C solutions in methanol were filtered in air and 

washed with cold, deaerated methanol which purified the brown Co^^ 

solids from any small amounts of Co^^^ which may have been produced. 

The solids, once dried, showed no tendency to convert to the Co^^^ 

form over a period of months. 

1,2,4,5-tetra(Salicylideneaminobenzene)dicobalt(II) (COgfsal^bz) 

Freshly vacuum dried (100°C) (sal^bzH^) ligand (0.22 g; 0.39 mmol) was 

placed in a glass fritted extraction thimble which in turn was placed 

in a Soxhlet apparatus. Deaerated, dry THF was used as the solvent to 

extract the liqand into solution and wash it down into the reaction 
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vessels containing Co(0Ac)2*4H20 (0.23 g; 0,92 mmol). The system was 

kept under Ng for the duration of the experiment. After several days 

of extractions, a dark, brown powder was filtered from the collection 

flask in an inert atmosphere frit (mp >300°C). 

1,2.4,5-tetra(5-tert-Buty 1 sali cyli dene)ami nobenzenedi cobalt(II) 

(C02(5-Bu sal Chloroform (800 mL) was deaerated with pre-

purified nitrogen. The 5-Bu^salicylidenebenzenetetramine ligand whose 

preparation was previously described was added to the warmed chloro­

form solution (1.23 g; 1.0 mmol). Then, Co(0Ac)2*4H20 (3.2 mmol) was 

added dropwise in an ethanol solution (^100 mL) which had also been 

deaerated. Immediately, as the ethanol solution was added, the ligand 

solution changed color from an orange-yellow to a deep brown color. 

After several hours of stirring the warm ethanol-chloroform solution, 

a brown precipitate began to be noticeable. After being stirred 

overnight, the solution was cooled in an ice bath, the brown precipi­

tate was filtered and dried in the vacuum oven at 100°C for 10-12 hr. 

Anal. Calcd for C5oHg2N40gCo2: C, 62.36; H, 6.34; N, 5.82; Co, 12.2. 

Found: C, 62.65; H, 6.00; N, 6.32; Co, 12.3. 

1,2,4,5-tetra(5-Sulfosalicylidene)aminobenzenedicobalt(11 ) sodium 

salt ([COgfS-SOgSalj^bzjNag) In a 3-neck, 150 mL round bottom 

flask, a solution of 30 mL of DMSO and 30 ml dry methanol was deaerated 

with prepurified Ng. 1,2,4,5-Tetraaminobenzene tetrahydrochloride 

(0.31 g; 1.09 mmol) (Aldrich) was added to the DMSO/methanol and a 

purple-gray suspension was formed. The suspension was warmed and with 
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vigorous stirring a purple solution was obtained. A solution of 

freshly prepared NaOMe was slowly added until the purple solution 

gradually changed to a yellow color. Then, 5-sulfosalicylaldehyde 

sodium salt (1.01 g; 4.5 mmol) in ~20 mL of DMSO was added dropwise 

and a brilliant deep red solution was obtained. Finally, with the 

reaction at reflux temperature, Co(0Ac)2*4H20 (0.541 g; 2.2 mmol) in 

~25 mL of DMSO was added dropwise. After addition of the diacetato-

cobalt (II) tetrahydrate, the solution became very dark, with a small 

amount of precipitation noticeable. After M8 hr reaction time, the 

precipitate was filtered from a cooled solution in air with some 

difficulty by vacuum filtration. The precipitate was washed with 

ethanol and ether and air dried, a black solid being obtained. The 

solid obtained was very water soluble and when dissolved in aerated 

water, an orange-brown solution was obtained. 

Dimethyl(1,2,4,5-tetra(5-tert-butylsalicvlidene)aminobenzene)-

dicobalt(III) (CH2Co(5-Bu^sal^bz)CoCH2) Solid sodium borohydride 

(5 mgs; 0.13 mmol) was added under a stream of Ng to a deaerated 

solution of Co^^^(5-Bu^salgbz) (30 mg; 0.03 mmol) dissolved in 

methanol (250 mL). The excess borohydride produced an immediate color 

change from red to light straw-yellow. An excess of methyl iodide 

(0.1 ml; 1.6 mmol) was added to the vessel using a Teflon needle and 

the flask was subsequently sealed under a positive Ng pressure. After 

several hours in the dark, the solution had become a darker brown. 

From this point on, exposure of the solution to light was avoided as 

much as possible. The methanol solution was extracted with CHgClg 
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(100 mL), with water added to the methanol to cause separation of the 

aqueous methanol from the CHgClg. After this extraction, the methanol 

layer was colorless and the CHgClg layer a very dark brown. The CHgClg 

was removed on a rotary evaporator with gentle warming (35°C). A dark 

brown solid was obtained by taking the solution to dryness. (Yield 

85-90%.) The dimethyl complex was purified by column chromatography 

using LH-20 Sephadex resin and eluting with CHgClg/MeOH (10:1). Any 

COg^^ which was not methylated remained at the top of the column as a 

pink-red band, while the dimethyl moved down the column as a brown 

band. NMR (CDgClg): 6 1.3 s, 7.0-7.6 m, 8.9 s (no integration was 

obtained due to very low S/N). 

Inorganic reagents 

Preparation of CrClg solutions Chromium(II) solutions were 

prepared by dissolving chromium metal pellets (99.999%; Apache 

Chemicals Inc.) in 6 M HCl (49). In a typical preparation, two pellets 

(1.2 g) were placed in an argon purged test tube with a 24/40 T joint 

equipped with gas inlet and outlet tubes. After careful deaeration, 

HCl (MS ml, 6 M) was added to the test tube. With warming, the 

solution began to turn blue as the pellets dissolved. Eventually, all 

of the metal dissolved and the volume of the solution was reduced with 

heating. Upon cooling, a blue solid was obtained which was rinsed with 

several aliquots of deaerated acetone until the acetone rinse was 

nearly colorless. The acetone removed CrCl^'GHgO and excess HCl. 

CrClg stock solutions were made from this solid with the desired amount 
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of dilute perchloric acid solution. The concentrations of the stock 

solutions were usually determined from an absorption maximum at 713 nm 

(e = 4.9). 

Preparation of bromopentaamminecobaltnuj A stock sample of 

(CofNHgjgBrjBrg was used as the starting material for the preparation 

of the perchlorate salt. The (CofNHgjgBrjBrg (5 g; 13 mmol) was 

dissolved in ^0.2 M HCIO^ (1.5 L) and warmed to 35°C for 10 minutes. 

The solution was filtered through a glass frit to remove any 

undissolved material. Concentrated HCIO^ (^250 ml) was added to the 

solution and it was cooled in an ice bath. A fine purple precipitate 

was obtained by filtration and was washed with cold ethanol and three 

washings of ether. The product was air-dried. The absorption spectrum 

in 0.1 M HCIO^ matched the literature (53). 

Methods 

Analyses 

The cobalt content of the complexes was determined by a standard 

spectrophotometric method. An accurately weighed sample of the complex 
2+ 

was digested in fuming HCIO^ to yield a Co solution. This solution 

was diluted to a known volume with 50% acetone/water in the presence of 

excess NH^SCN to produce Co(SCN)^ The absorbance at for 

Co(SCN)^^~ (623 nm; e 1842 cm"^) was used to calculate the per­

centage of cobalt in the samples. 
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Stoichiometn'es 

The stoichiometry of several reactions was determined, including 

the reactions of Hg^*, with (CHgCojgtS-Bu^sal^bz), CrClg with 

CogllfS-Butsal^bz) and Co(NH2)gBr2+ with COg^fS-SOgSal^bz). In all 

cases, the stoichiometries were determined by spectrophotometric 

titrations. The general procedure used was as follows. A stock 

solution of the dicobalt complex to be titrated would be prepared and 

its concentration determined by the absorbance of a characteristic 

visible peak which had a previously determined e value (Table II-l). 

A known volume of this solution would be transferred to a 1 or 2 cm 

cell, as appropriate, and aliquots of the reagent with which the com­

pound was to be titrated would be added using microliter syringes. 

After each addition, once a constant absorbance reading was obtained, 

the absorbance was recorded. These readings were used to make a 

stoichiometry plot. Alternately, 5 identical cells were filled with 

a known volume of the cobalt complex solution and various amounts of 

the titrant solution were added to each cell. The absorbance of each 

cell was recorded before and after the titrant was added. When 

necessary, volume corrections were calculated; however, these were 

usually so small that they could be neglected. 

Kinetics 

Owing to the solubility problems and purification difficulties 

discussed earlier, none of the kinetic studies was of a substantial 

nature. All of them should be classified as preliminary experiments 
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Table II-l. Electronic spectra of the ligands and cobalt complexes® 

Compound Solvent amax/nm (Log^Q e/M"^ cm^b 

sal^bzH^ DMSO 396(4.44), 353(4.48) 

(co^^jgfsal^bz) DMSO 475(4.78), 322(4.78) 

(cog^^jgfsal^bz) DMSO 520(—-). 491 (---), 331 

5-Bu^sal^bzH^ THF 398(4.57), 366(4.58), 
277(4.49) 

(coiijgfs-Butsal^bz) Methanol ~450(~4.5), 328(M.6) 

(coiiiigts-Bufsal^bz) Methanol 525(4.52), 491(4.53), 
344(4.54), 258(4.85) 

(chgcojgfs-Butsal^bz) Methanol 620(sh), 462(4.43), 
330(4.46) 

(coiiigfs-sogsalgbz) Water 416(4.69), 310(4.56) 

(Colliigfs-sogsal^bz) Water 498(4.63), 467(4.62), 
334(4.56), 262(5.04) 

^Values were determined at room temperature. 
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and any conclusions drawn from these experiments should bear this in 

mind. Fast reactions were followed using a Durrum 110 stopped-flow 

spectrophotometer. For single-stage reactions under pseudo-first-order 

conditions, the absorbance versus time data were recorded on a 

Biomation 802 Transient Recorder and rate constants were obtained 

from a least squares routine using a PDP-15 computer. For reactions 

with longer half-lives, a Gary 219 recording spectrophotometer was 

used and the data were treated by conventional pseudo-first-order plots 

of log(D^-D^) versus time. 

Because of experimental factors, some reactions had to be studied 

under second-order conditions. The expression used for these experi­

ments was: 

[BJ 
In B = In + {acb^] - b[aq]}kt 

The kinetic data were plotted as In versus time. The concentrations 

of species [A] and [B] were determined by absorbance maxima and checked 

with the total absorbance change. 

Instrumentation 

Reactions were studied using Gary Model 14 or 219 spectrophotom­

eters and a Durrum Model D-110 instrument. Nmr data were obtained on a 

Varian HA-100 spectrometer or a JEOL Model FX-90Q instrument; ir 

spectra were determined using a Beckman 4820 instrument. 
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RESULTS 

In general, prior to solution studies, all of the complexes were 

purified by column chromatography. Gel filtration using Sephadex 

LH-20 was found to separate COg^^fS-Bu^sal^bz)^^ nicely from the 

dimethyl derivative and from the Cog^^ in methanol solvent. 

Surprisingly, LH-20 was also found to be useful for the purification 

of the anionic complex Cog^lS-SOgSal^bz)*". Spectral analysis of the 

fractions collected in any particular chromatogram was used to decide 

which fractions were suitable for use. The spectra of the various 

fractions showed conclusively that the purification process was 

definitely required to obtain a "spectrally" pure fraction. It should 

be noted, however, that in many cases most of the impurity was simply 

an undesired oxidation state of the complex. (For instance, if the 

COg^^ product was desired, a small amount of Co^^ would often be found.) 

Reactions of the Binuclear Complexes 

Reaction of Co^^^(5-Bu^sal^bz)^* with CrClg 

COg^^fS-Bu^sal^bz)^* which was prepared by air oxidation of the 

Cog^ solid dissolved in methanol, was reacted with CrClg. The CrClg 

reduction was qualitatively observed to be a very fast reaction, 

apparently complete in the time of mixing in a spectrophotometer cell. 

As can be seen in Figure II-2, a 2:1 stoichiometry of reaction between 

CrClg and Cog^^ was obtained (Equation II-l). 

2crcl2 + cogll > 2crcl2 + cog^ (ii-l) 
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Figure II-2. Spectrophotometric titration for the reaction of CrClg 

with Co^^^CS-Bu^sal^bz)^"^ (£ = 1 cm) 
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(This stoichiometry was obtained with the endpoint taken as that point 

at which the 440-450 nm peak of Cog^ was maximized, beyond that point 

the 450 nm peak was reduced in absorbance by additional CrClg.) The 

spectral changes observed when CrClg was added to Cog^^ are shown in 

Figure II-3. Isosbestic points at 377 and 479 nm were maintained prior 

to the addition of excess CrClg; however, after an excess of CrClg was 

added, the isosbestic points were lost. 

The reaction was studied by the stopped-flow method at 25±0.2°C 

and was found to be a very fast reaction under conditions of excess 

CrClg (~10 msec). The reaction, however, was not studied because of 

difficulties with the solvent conditions, i_.e., keeping dilute Cr(II) 

in methanol solution at a pH>3 to keep the Co^^ from decomposing once 

it was reduced by Cr(II). Finally, an additional problem was found 

under conditions of a large excess of Cr(II) which was attributed to 

ligand reduction by Cr(II). 

Reduction of COg^^fS-Bu^^al^bz)^* with CrClg in methanol with 

pyridine present as a base added in excess, yielded similar results to 

those in the absence of pyridine (Figure II-4) except that the initial 

COg^^ spectrum was altered somewhat by the added pyridine. Still, as 

can be seen in Figure I1-4, isosbestic points at 380 and 478 nm appear 

to be maintained. 

Another reductant for COg^^ was found to be hydrogen using PtOg 

as a catalyst. This reduction resulted in the production of a species 

which has a spectrum that matches the spectrum produced by Cr(II) 

reduction. Owing to the very fine particle size of the catalyst, it 
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Figure II-3. Electronic spectrum of Co^^^tS-Bu^sal^bz),before (a) 

and after (b) addition of 2 equivalents of CrClg 
(i = 1 cm) 
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Figure II-4. Electronic spectrum of COg^^tS-Bu^sal^bz) before (a) 

and after (b) addition of 2 equivalents of CrClg with 

pyridine present (10"^ M) (2 = 1 cm) 
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was necessary to filter it off under air-free conditions using a milli-

pore filter prior to using the solutions. The reduction typically 

required 2 hours to reach completion. 

Reaction of Co^^^CS-SO^sal^bz)^" with CrClg 

The stoichiometry for the reaction of CrClg with 

iii ?-
COg (S-SOgSal^bz) Equation II-2, was established by spectrophoto-

metric titration as 2:1 (Figure II-5). Despite some complications with 

2CrCl2 + Co^/IfS-SOgSal^bz) —> 2CrCl2 + Co^^ (II-2) 

pH, the COg^^ complex of the sulfonated ligand was considered to be a 

good one for kinetics investigations because of its water solubility. 

This opened the way for the study of the Cr(II) reaction without trying 

to work in mixed solvents. Unfortunately, the sensitivity of the 

sulfonated complex to high acid required working with buffered 

solutions in a pH range of ~3-6. Side reactions were another compli­

cation if CrClg was used in large excess, so second order conditions 

were employed. Under second order conditions with COg^^ always in 

slight excess, there was no evidence of a ligand reduction reaction. 

In acetate buffer solution, the CrClg reduction reaction was found to 

be MO® M~^s"^ and varied inversely with [H*] (Table II-2). 

In an effort to obtain the Co^ state in COgfS-Bu^salj^bz, a 

solution of Co^^^(5-Bu^sal)^bz^* in methanol v;as treated with NaBH^. 

The red solution quickly became a pale yellow, but its visible 

spectrum, as shown in Figure III-5, was quite different from the 
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Table II-2. Rate constants for the reaction of CrClg with 

(co^^iïfs-sogsal^jbz* 

pH 10"® k/M"^ s"^ 

1.3 0.004 

4.3 1.2 + 0.1 (4) 

4.3 1.1 (1) 

6.0 9.8 (1) 

\ = 0.11 M (NaClO^); aqueous solutions were used with acetate 

buffer unless otherwise indicated; T = 25°C, 
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Figure II-5. Spectrophotometric titration for the reaction of 

CrClg with Cog^^B-SOjSal^bz)^"^ (£ = 1 cm) 
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spectrum of COg^ (either from the solid or by Cr(II) reduction. 

Furthermore, this borohydride reduced species reacted quite cleanly 

2+ II 
with Cu to give a spectrum very similar to the COg spectrum. 

Several attempts to obtain a stoichiometric value for oxidation of this 

highly reduced species always yielded highly irreproducible results. 

Nevertheless, it would seem that this reduced species required at 
2+ 

least four or more equivalents of Cu to reach what could be 

considered similar to the Co^^ state by comoarison with the Cr(II) 

reduced spectrum (Figure II-6). The problem in obtaining qood 

stoichiometries may have been due to incomplete quenching of the 

borohydride present in the solutions, although even when acetone was 

added in excess to quench the borohydride prior to the titration with 
2+ 

the Cu solution, variable stoichiometries were obtained. 

Reaction of COg^fS-Bu^sal^bz) with oxidants 

Several oxidants, including HgOg, Og, Co^NHgjgCl^*, Co(NH2)gBr^*, 

and Ce^^ were found to oxidize Co2^(5-Bu^sal^bz) to a species which had 

a spectrum very similar to the initial Cog^^ spectrum. However, 

complete resolution of the longer wavelength (500 nm) double-peak 

feature was usuallv not obtained. Clearly, one of the best oxidants 

for this reaction was found to be CofNHgjgBr^* (Table II-3). Although 

III it reacted somewhat sluggishly, it produced a good COg spectrum 

(Figure II-7). The reaction typically took 10-30 minutes to reach 

completion under second-order conditions, but was faster than the 

reaction of Co^NHgigCl^*. 
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Figure II-6. Electronic spectrum of COgtS-Bu^sal^bz) in methanol 

after reduction with NaBH^ 
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Table II-3. Rate constants for the reaction of oxidants with 

(CoIII)2(5-Butsal4bz) at 25°* 

Oxidant Concentration/M [(Co^^)2(5-Bu^sal^bz)]/M k/M'l s-T 

ColNHgjgBr^"*" 1.1 X 10-3 <2 X lO'S 9.7 x 10*' 

5 x 10"4 <2 x lO'S 9.1 x 10*^ 

8 X 10-4 ^10-5 10±3^ 

^2^2 
5 X 10"4 1.7 x o

 cr
 

5 X 10"* %10"S ^80^ 

^^Co^^jgfS-Bu^sal^bz) was prepared by reduction of 

(Co^^^jgtS-Bu^sal^bz) with Hg over PtOg. 

'^Unbuffered methanol solutions; ionic strength not adjusted. 

^At pH 7.5 with THAM/HCl buffered 10% aqueous methanol. 
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Figure II-7. Electronic spectrum of Co^^lS-Bu^sal^bz) before (a) 

and after (b) reaction with CoCNH^jgBr^"*" (£ = 1 cm) 
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For the reaction of Co^^(5-Bu^salgbz) with HgOg, some preliminary 

kinetic experiments were performed spectrophotometrically (Table 

II-3). The absorbance was monitored at 500 nm which is an absorbance 

maximum for the Cog^^ complex. Hydrogen peroxide was always used in 

excess over COg^ because in experiments with Cog^ in excess, the 

reaction appeared to be autocatalytic. All of the plots of 

InlDL-D I versus time were found to be curved with the initial points 
I t oo' — 

lying above the "best fit" line. The last oxidant, Ce^^, was not found 

to be very useful because the high acid needed to keep Ce^^ from 

polymerizing was too high for the Co^^ complex and caused considerable 

decomposition. The spectral changes were consistent with the oxidation 

of the Cog^, however. 

The reaction of CofNHgjgBr^* with Co^^fS-SOgSal^bz)^" was very 

similar to its reaction with Co^^(5-Bu^sal^bz) except that it was much 

faster and therefore much easier to titrate spectrophotometrically. 

The spectrophotometric titrations once again revealed a 2:1 stoichiom-

etry for the reaction between CofNHgjgBr^* and COg^fS-SOgSal^bz)* 

(Figure II-8). 

Orqanometallic compound formation and reactivity 

Reaction of "NaBH^-reduced Co2(5-Bu^sal^bz)" with CHgl in methanol 

was found to occur relatively slowly, requiring 20-30 minutes to reach 

completion. The reaction was carried out under an inert atmosphere of 
ox 

Cr -scrubbed Ng; the product solution was found to be liqht-sensitive, 

but not air-sensitive. By diluting the methanol solution with water 
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Figure II-8. Spectrophotometric titration for the reaction of 

CotNHgjBrZ* with Co^^CB-SOgSal^bz)^" {I = 1 cm) 
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and extracting the aqueous methanol with CHgClg, a dark brown CHgClg 

solution was obtained. Because of the relatively low solubility of 

COg^tS-Bu^salgbz), only small quantities of this dark brown complex 

could be prepared (10-20 mgs). Because of this, the complex was 

identified as being a dimethyl complex by its chemical reactivity. 
2+ 

Based upon mononuclear analogs such as CHgCofsalgPhen), Hg would be 

expected to cleave the cobalt-carbon bond in a relatively fast 
2+ 

reaction (121). Also, the spectrophotometric titrations between Hg 

and (CH2Co)2(5-Bu^sal^bz) revealed a 2:1 stoichiometry and the 

reaction was qualitatively noted to be a fast one. Although the 

CHgHg* product was not checked, by analogy with mononuclear comolexes 

it is written as 

2Hg2+ + (CHgCojg 2HgCH3 + Co"^ (II-3) 

the other product of this electrophilic cleavage reaction. In any 

event, the COg product was clearly Co^^^ (Figure II-9), even under 
2+ 

anaerobic conditions. The 2:1 stoichiometry and the rate of the Hg 

reaction clearly indicate that a dimethyl cobalt complex has been 

formed. 
2+ 

Some kinetic experiments were performed to examine the Hg 

reaction more closely (Table II-4). The rate constant determined was 

3 
similar to that observed for the mononuclear analog (2.4 x 10 versus 

3.3 X 10^ M~^ s'^ (120). The rate law may be written as: 

-dCfCH-Co),] 2+ 
3r~^= k[h9' jctchgco),] 
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Figure II-9. Electronic spectrum of (CHgCojgtS-Bu^sal^bz) before 

(a) and after (b) reaction with Hg^* (£ = 1 cm) 
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Table II-4. 
2+ 

Rate constants for the reaction of Hg with 

(CHgCojgfS-Bu^salgbz) 

10^ [Hg2+]/M kobs/s"^ 10^ k/M-1 s-1 

1.05 0.29(2) 2.7 

2.1 0.52(3) 2.5 

4.2 0.86(7) 2.1 

^Solvent was 0.1 HNO? in methanol; [(CH.Co),] = 1.4 x 10"^ M; 
T = 25±0.2°C. ^ 
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Therefore, this provides another bit of chemical evidence consistent 

with its identification. There was no evidence for two different rate 

constants for the two methyl groups of each molecule. The implications 

?+ 
of this would appear to be that both methyl groups are cleaved by Hg 

independent of one another. The dimethyl complex was also character­

ized by its photosensitivity (Figure 11-10) as shown in Equation II-4, 

and its stability in the absence of light. Equation 11-5, It was also 

(CHgCoigfS-Butsalgbz) COg^^S-Bu^sal^bz) + CH^-products (II-4) 

t 0? 
(CHgCoigtS-Bu^sal^bz) N.R. (II-5) 

observed that reaction II-4 was substantially retarded if the system 

was purged with N2 prior to exposing it to the light (122). The 

spectral changes in the absence of Og were also quite different with 

very little evidence for Co^^^ formation. 

Several attempts were made to prepare the corresponding diethyl 

complex from ethyl iodide, but in each attempt it appeared that no 

reaction took place. The reason for this lack of reaction will be 

discussed later. In any case, no other alkyl derivatives were 

prepared. 
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Figure 11-10. Electronic spectrum of (CHgCojgfS-Bu^sal^bz) before (a) 

and after (b) '\,1 hr exposure to room lights (& = 1 cm) 
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DISCUSSION 

In the reactions studied, the presence of two cobalt atoms which 

might be able to interact electronically did not seem to impart 

special reactivity to these complexes. Even in a complex which would 

appear to be ideally set-up to show neighboring group effects such as 

the dimethyl complex (IV), no evidence of a monomethyl intermediate 

with unique properties was detected. 

One might expect to observe two kinetic steps if the monomethyl 

complex reacted at a different rate than the dialkyl. This would be 

equivalent to A->B->C, where A = dial kyl and B = monoalkyl. One chemical 

reason for observing only one step could be that both metal centers 

react as separate transition metal complexes and can be treated as 

separate entities. This would imply that the bridging group does not 

allow a significant amount of interaction between the two metal 

centers. The observation of single-stage kinetics for A-*-B-+C has been 

recently reviewed (123). In another instance, the CrClg reduction of 

COg^^fS-SOgSal^bz) under second order conditions was found to give 

straight-line plots, implying that no neighboring group effects were 

being observed. Therefore, these two reactions which were operating 

under entirely different conditions both showed no evidence of 

neighboring group participation. Again, simply stated, these reactions 

of the binuclear complexes were kinetically indistinguishable from the 

mononuclear analogs. 

The situation was not as clear-cut with regard to the oxidation 

reactions of Co^^(5-Bu^sal^bz) and COg^(S-SOgSal^bz)^". In the former 
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P+ 
case, both HgOg and CofNHgjgBr gave curved first-order plots under 

pseudo-first-order conditions. Although in some cases, two-stage 

kinetics might have been used to rationalize the results, more than two 

steps were sometimes observed. The sorting-out of further information 

seems unreasonably difficult at this time. It was observed, however, 

that two rate constants were quite reproducible for this reaction. 

The problem which developed was, again they were not the only two steps 

observed. 

The trends which can be ascertained from the chemistry of 

Co^^'^^^Csal^bz)®'^"^, Co"'^^^(5-Bu^sal^bz)°'^^ and 

COg^'^^^fS-SOgsalgbz)^'^" are somewhat limited because of several 

factors. Owing to the extremely low solubility of Co^^(sal^bz), very 

little of its solution chemistry was studied. The approach taken was 

to characterize as well as possible its UV-visible spectrum and observe 

some solution properties as a function of the metal oxidation state 

and solvent. Unfortunately, both the ligand and the cobalt complex 

were too insoluble for nmr studies. The second and third members of 

the series were studied in two different solvents and thus comparisons 

between these two are also somewhat strained. What can be confidently 

stated is that the addition of the 5-tert-butyl groups to Cogfsal^bz) 

greatly increased its solubility, perhaps by as much as 2 or 3 orders 

of magnitude in some solvents. Despite this increase in solubility, 

the 5-tert-butyl complex was still not soluble enough for nmr studies. 

However, the dimethyl derivative (CHgCojgfS-Bu^sal^bz) was sufficiently 

more soluble to allow for nmr data acquisition (see Experimental). 
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Also, the (5-Bu^sal^bzH^J ligand was quite a bit more soluble in CHgClg 

and CHClg than (sal^bzH^), and its nmr spectrum was also obtained 

(see Experimental). The peak positions for the free ligand were 

assigned based on their chemical shifts. Unfortunately, the peak 

positions for the complex did not allow an unambiguous assignment of 

the methyl groups bonded to cobalt. Their existence was already 
2+ 

established, however, by the stoichiometry of the reaction with Hg . 

Because the dimethyl complex was always prepared on a small scale, no 

elemental analysis was obtained for it. The small scale preparation 

was necessitated by the low solubility of the starting material. 

Despite this, chromatographic separations revealed that the only 

impurity which could be separated was a small amount of unmethylated 

complex in the form of COg^^(5-Bu^sal^bz)^^. 

The fact that the dimethyl complex was prepared from a NaBH^ 

reduced solution reveals that the reduction must be reversible by some 

pathway during the course of reaction with CH^I or the subsequent 

work-up. This may be claimed because the ultimate dimethyl product 

yields Co^^^ when exposed to air and light or reacted with Hg^^. 

Although the NaBH^ reduction clearly does not produce a COg solution, 

there is a possibility that a small amount of cobalt-hydride species 

are formed and ultimately react with CHgl. Another possibility would 

be that the reaction takes place by an activation of CH^I. Perhaps 

one Co center could activate the CH^I forming an activated precursor 

complex and a second Co react with the activated complex to give a 

methylated Co. For a binuclear complex, this could be an 
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intramolecular or an intermolecular process. This type of scheme bears 

some resemblance to a reaction of with several alkyl iodides 

including methyl iodide. Halpern has proposed that one molecule of 

B^2r could activate RX and a second molecule of B^gp would then react 

with the activated methyl iodide (124). Perhaps this type of acti­

vation would account for the somewhat slow reaction of Co^^CS-Bu^sal^bz) 

with methyl iodide. 

B i 2 r + R X  ^  B i 2 r ' R X  

Bl2r'RX + + X" 

2B^2r + RX —> R-B^2 ^123 ^ 

The third member of the series COg^tG-SO^sal^bz)^" is of about the 

same solubility as the 5-tert-butyl complex, perhaps slightly more 

soluble, but now, of course, the solubility is in water in which the 

other two complexes were insoluble. Its chemistry is similar to the 

other two in several respects. All three complexes show similar 

changes when air-oxidized in the presence of some type of coordinating 

base, namely a double-absorbance peak at longer wavelength (~500 nm) 

and another peak at 330 nm. (Another even stronger peak %260 nm was 

not fully explored.) All three complexes show similar changes when 

reduced with NaBH^ and a tendency to be reduced beyond the Co^^ state. 

This further reduced state does not show the reactivity which would be 

expected for a Co^ center and, indeed, is not considered to be Co^. 

As previously mentioned, this state is considered to be likely to be 
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due to some ligand reduction, which NaBH^ is known to be suitable for 

in methanol (125,126). Because of the stated intent of this work, a 

further reduced ligand system was not considered to be of interest for 

further study. For this reason, NaBH^ was typically avoided for 

reducinq Cog^^ solutions to Co^^, with milder reductants yielding more 

suitable results. Even with milder conditions, care had to be 

exercised to prevent decomposition of the complexes. For example, if 

COg^^tS-Bu^sal^bz)^* was reduced in methanol with over PtOg, 

decomposition would occur unless the solution was buffered around 

pH ^6-8. The exact mechanism of this decomposition and the products 

were not investigated, but from the very large loss in absorbance, it 

seems likely that the metal was slipping out of the chelate or the 

ligand was possibly being destroyed. 

Owing to the very nature of a Schiff base. I.e., it is formed via 

a condensation reaction, it might seem contradictory, perhaps even 

foolhardy, to work with a Schiff base in water. Despite this a priori 

T I T  9 -
reasoning, the COg (S-SO^sal^bz) ~ complex was investigated in water 

and found to be quite stable at room temperature. Its stability was 

judged by recording the absorbance spectrum during a 24 hr period and 

noting <2-3% absorbance change at the maxima and no shift in peak 

positions. This finding is in good agreement with a recent report of 

the stability of a CufS-SOgSalgen) complex in water (127). This 

finding does contrast, however, with results reported by Merrell and 

Abrams in which they found the nickel and copper complexes of 

(S-SOgsal^H^bz) to be unstable in water (128). Although the 
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differences may be due to the differences in the labilities of the 

various metals; it should be noted that CufS-SOgSalgen) was stable 

towards hydrolysis up to 80°C in water and yet CUgtS-SOgSal^bz) 

"readily hydrolyzes". It should be noted, however, that at higher 

temperatures in water COgtS-SOgSal^bz) did decompose to a water-

insoluble brown product. 

The reaction of CrClg with Cog^^fS-SOgSal^bz)^", which was studied 

kinetically, offers an interesting reaction for speculation. Indirect 

evidence indicates that the mechanism for reduction is either outer-

sphere or if inner-sphere, it probably goes through a halide atom 

bridge (Ref. 39, p. 501), but most probably not by attack of Cr(II) at 

the phenolic oxygens with subsequent electron transfer. One might 

expect the latter type of attack to result in a bound Cr(III) which, 

being substitutionally inert might remain bound long enough to be 

detected spectroscopically or by the chromatographic elution pattern. 

Since this was not observed, electron-transfer most probably occurs by 

one of the two former pathways. 

Careful study of the spectral changes which occur when the Co^^ 

complexes are reacted with o)^gen as opposed to other oxidants, has 

revealed that the formulation of an oxygen-carrying cobalt species does 

not seem likely. This conclusion was based on the results obtained 
?+ T T 

when CofNHgjgBr in particular was reacted with the Cog species of 

the second and third ligands. By carefully avoiding exposure to air, 

the effect of the bromopentaarainecobalt(III) alone was investigated. 

As a comparison of Figures 11-11 and 11-12 shows, the effect of Og and 
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Figure 11-11. Electronic spectrum of Co^^^fS-SO^sal^bz)^" produced 

by reaction of CofNHgjgBrZ* with Co|^(S-SOgSal^bz)^" 
(2 = 1 cm) 



www.manaraa.com

168  

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 
500 600 300 400 

X/nm 

Figure 11-12. Electronic spectrum of COg^fS-SO^sal^bz)^ 

partially oxidized with Og bubbling to 

Co^^IfS-SOgSal^bz)^- (£ = 1 cm) 
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CofNHgïgBr^* on the spectrum of Co^^lS-SO^sal^bz)^" is very similar. 

The possibility, of course, exists that in the former case a hydroxy-

cobalt species forms while in the latter case, a bromo-cobalt species 

may form. 

The CrClg reduction of COg^^ (produced initially by air-oxidation) 

also seems to rule out some sort of oxygen-bound complex because only a 

2:1 stoichiometry was obtained for that reaction. An oxygen-bound 

species would require additional CrClg. 

The first report of a synthetic reversible molecular oxygen 

carrier which worked in aqueous solution was by Burke and coworkers for 

a cobalt(II)-histidine complex (129). However, as discussed earlier, 

the mononuclear model compound, Cc^salgPhen), is not capable of binding 

oxygen in protogenic solvents. In fact, though there are a large 

number of cobalt Schiff base type complexes which bind molecular oxygen 

in solution, it seems that all of them require nonaqueous solvents 

(130-132). The nxyoen binding ability of some of these complexes may 

be due to the lack of available hydrogen atoms. In this study, protic 

solvents were used and this lends still further support to the 

contention that species are formed by air oxidation and are not 

oxygen adducts. 

Although these complexes have been difficult to work with in 

solution studies, some general conclusions seem evident. First, the 

solubility of these complexes is very dependent upon substitution 

around the ligand system, but in general the complexes have only slight 

solubility in most solvents. Second, there appears to be no dramatic 
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changes in the reactivities of the binuclear analogs as compared with 

mononuclear models and as far as the results obtained have shown 

the mixed-valence species appear to have properties which are just 

intermediate between the Co^^ and Co^^^ species. More work is needed 

in the study of binuclear complexes in solution to probe factors which 

effect reactivity. 
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